Maintaining blood glucose concentration within a relatively narrow range through periods of fasting or excess nutrient availability is essential to the survival of the organism. This is achieved through an intricate balance between glucose uptake and endogenous glucose production to maintain constant glucose concentrations. The liver plays a major role in maintaining normal whole body glucose levels by regulating the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis), thus controlling the levels of hepatic glucose release. Aberrant regulation of hepatic glucose production (HGP) can result in deleterious clinical outcomes, and excessive HGP is a major contributor to the hyperglycemia observed in Type 2 diabetes mellitus (T2DM). Indeed, adjusting glycemia as close as possible to a non-diabetic range is the foremost objective in the medical treatment of patients with T2DM and is currently achieved in the clinic primarily through suppression of HGP. Here, we review the molecular mechanisms controlling HGP in response to nutritional and hormonal signals and discuss how these signals are altered in T2DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674831 | PMC |
http://dx.doi.org/10.1016/j.mam.2015.09.003 | DOI Listing |
Drugs
January 2025
Division of Endocrinology, Department of Pediatrics, College of Medicine, University of Florida, 1699 SW 16th Ave, Building A, Gainesville, FL, 32608, USA.
Type 1 diabetes mellitus (T1DM) is characterized by the progressive, autoimmune-mediated destruction of β cells. As such, restoring immunoregulation early in the disease course is sought to retain endogenous insulin production. Nevertheless, in the more than 100 years since the discovery of insulin, treatment of T1DM has focused primarily on hormone replacement and glucose monitoring.
View Article and Find Full Text PDFAnn Med
December 2025
Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Despite surgical and intravesical chemotherapy interventions, non-muscle invasive bladder cancer (NMIBC) poses a high risk of recurrence, which significantly impacts patient survival. Traditional clinical characteristics alone are inadequate for accurately assessing the risk of NMIBC recurrence, necessitating the development of novel predictive tools.
Methods: We analyzed microarray data of NMIBC samples obtained from the ArrayExpress and GEO databases.
Life Metab
February 2025
Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC 29029, United States.
Graphical Abstract.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China.
Sodium glucose co-transporter 2 (SGLT2) inhibitors represent a novel class of hypoglycemic drugs that have emerged in recent years. These inhibitors function primarily by blocking the reabsorption of glucose in the kidneys, specifically targeting the SGLT2 proteins in the proximal convoluted tubules. This inhibition results in the reduction of blood glucose levels through increased glucose excretion in the urine.
View Article and Find Full Text PDFCureus
December 2024
Neurosurgery, Federal Fluminense University, Niterói, BRA.
The coexistence of type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) represents a significant global health challenge, contributing to substantial morbidity, mortality, and economic burden. T2DM is the leading cause of CKD, and CKD exacerbates diabetes-related complications, creating a bidirectional relationship driven by oxidative stress, inflammation, and endothelial dysfunction. Diabetic kidney disease (DKD), affecting some individuals with T2DM, accelerates progression to end-stage renal disease (ESRD) and increases cardiovascular mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!