Synthesis and electrochemical properties of spherical and hollow-structured NiO aggregates created by combining the Kirkendall effect and Ostwald ripening.

Nanoscale

Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

Published: December 2015

The Kirkendall effect and Ostwald ripening were successfully combined to prepare uniquely structured NiO aggregates. In particular, a NiO-C composite powder was first prepared using a one-pot spray pyrolysis, which was followed by a two-step post-treatment process. This resulted in the formation of micron-sized spherical and hollow-structured NiO aggregates through a synergetic effect that occurred between nanoscale Kirkendall diffusion and Ostwald ripening. The discharge capacity of the spherical and hollow-structured NiO aggregates at the 500(th) cycle was 1118 mA h g(-1) and their capacity retention, which was measured from the second cycle, was nearly 100%. However, the discharge capacities of the solid NiO aggregates and hollow NiO shells were 631 and 150 mA h g(-1), respectively, at the 500(th) cycle and their capacity retentions, which were measured from the second cycle, were 63 and 14%, respectively. As such, the spherical and hollow-structured NiO aggregates, which were formed through the synergetic effect of nanoscale Kirkendall diffusion and Ostwald ripening, have high structural stability during cycling and have excellent lithium storage properties.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr05930eDOI Listing

Publication Analysis

Top Keywords

nio aggregates
24
spherical hollow-structured
16
hollow-structured nio
16
ostwald ripening
16
kirkendall ostwald
8
nanoscale kirkendall
8
kirkendall diffusion
8
diffusion ostwald
8
500th cycle
8
measured second
8

Similar Publications

Pyrazole-Mediated On-Surface Synthesis of Nickel/Nickel Oxide Hybrids for Efficient Urea-Assisted Hydrogen Production.

Nano Lett

January 2025

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China.

Creating densely functionalized supported materials without aggregation has been one of the ultimate goals for heterogeneous catalysts. Direct conversion of readily available bulk materials into highly dispersed supported materials could be highly beneficial for real applications. In this work, we invented an on-surface synthetic strategy for generating highly loaded and well-dispersed nickel nanoparticles on nickel oxide supports (Ni/NiO).

View Article and Find Full Text PDF

Efficient Toluene Decontamination and Resource Utilization through Ni/AlO Catalytic Cracking.

Molecules

October 2024

Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China.

Volatile organic compounds (VOCs), particularly aromatic hydrocarbons, pose significant environmental risks due to their toxicity and role in the formation of secondary pollutants. This study explores the potential of catalytic pyrolysis as an innovative strategy for the effective remediation and conversion of aromatic hydrocarbon pollutants. The research investigates the high-efficiency removal and resource recovery of the VOC toluene using a Ni/AlO catalyst.

View Article and Find Full Text PDF

An eco-friendly synthetic route was developed for the formation of nickel oxide (NiO and NiO) nanoparticles (NPs) by treating Ni(NO).6HO with aqueous/ethanolic extracts of leaves; the same reaction was performed in the presence of graphene oxide (GO) to produce NiO@GO and NiO@GO nanocomposites (NCs), respectively. The NMs were characterized by XRD, FT-IR, SEM, EDX, UV-visible spectroscopy, and TGA-DSC analysis.

View Article and Find Full Text PDF

Multiform NiO nanowalls with a high specific surface area were constructed in situ on carbon foam (CF) to construct NiO@CF/OD composite phase change materials (CPCMs). The synthesis mechanism, microstructures, thermal management capability, and photothermal conversion of NiO@CF/OD CPCMs were systematically studied. Additionally, the collaborative enhancement effects of CF and multiform NiO nanowalls on the thermal properties of OD PCMs were also investigated.

View Article and Find Full Text PDF

Pre-separation combined with reduction roasting for high-quality recovery of graphite and lithium from spent lithium ion batteries.

Waste Manag

October 2024

School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, Jiangsu 221116, China. Electronic address:

The recycling of spent lithium ion batteries is of great significance because it contains large amounts of valuable metals. But current recovery methods exhibit limited efficiency in selectively extracting lithium from spent electrode materials and spent graphite becomes metallurgical residues. In this study, we propose a novel recycling flowchart that combines flotation with multi-stage water-leaching to enhance the recovery of graphite and lithium from black mass derived from spent lithium ion batteries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!