AI Article Synopsis

Article Abstract

Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809055PMC
http://dx.doi.org/10.1016/j.neuron.2015.10.007DOI Listing

Publication Analysis

Top Keywords

5ht system
12
diversity 5ht
8
5ht neuron
8
neuron subtypes
8
subtype-specific functions
8
5ht
7
neuron
5
system
5
multi-scale molecular
4
molecular deconstruction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!