Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynamics of CH3NH3(+) cations and their impact on relevant processes such as charge recombination and exciton dissociation are still poorly understood. Here, using elastic and quasi-elastic neutron scattering techniques and group theoretical analysis, we studied rotational modes of the CH3NH3(+) cation in CH3NH3PbI3. Our results show that, in the cubic (T > 327 K) and tetragonal (165 K < T < 327 K) phases, the CH3NH3(+) ions exhibit four-fold rotational symmetry of the C-N axis (C4) along with three-fold rotation around the C-N axis (C3), while in the orthorhombic phase (T < 165 K) only C3 rotation is present. At around room temperature, the characteristic relaxation times for the C4 rotation are found to be τC4 ≈ 5 ps while for the C3 rotation τC3 ≈ 1 ps. The T-dependent rotational relaxation times were fitted with Arrhenius equations to obtain activation energies. Our data show a close correlation between the C4 rotational mode and the temperature dependent dielectric permittivity. Our findings on the rotational dynamics of CH3NH3(+) and the associated dipole have important implications for understanding the low exciton binding energy and a slow charge recombination rate in CH3NH3PbI3 which are directly relevant for the high solar cell performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp05348jDOI Listing

Publication Analysis

Top Keywords

rotational dynamics
8
dynamics ch3nh3+
8
charge recombination
8
c-n axis
8
relaxation times
8
rotational
6
dynamics organic
4
organic cations
4
ch3nh3pbi3
4
cations ch3nh3pbi3
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!