The interaction affinity between human IgG and a short peptide ligand (hexameric HWRGWV) was investigated by following the shifts in frequency and energy dissipation in a quartz crystal microbalance (QCM). HWRGWV was immobilized by means of poly(ethylene glycol) tethered on QCM sensors coated with silicon oxide, which enhanced the accessibility of the peptide to hIgG and also passivated the surface. Ellipsometry and ToF-SIMS were employed for surface characterization. The peptide ligand density was optimized to 0.88 chains nm(-2), which enabled the interaction of each hIgG molecule with at least one ligand. The maximum binding capacity was found to be 4.6 mg m(-2), corresponding to a monolayer of hIgG, similar to the values for chromatographic resins. Dissociation constants were lower than those obtained from resins, possibly due to overestimation of bound mass by QCM. Equilibrium thermodynamic and kinetic parameters were determined, shedding light on interfacial effects important for detection and bioseparation. Graphical Abstract The interaction affinity between human IgG and a short peptide ligand was investigated by using quartz crystal microgravimetry, ellipsometry and ToF-SIMS. Equilibrium thermodynamic and kinetics parameters were determined, shedding light on interfacial effects important for detection and bioseparation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-015-9135-y | DOI Listing |
Phys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
Although nickel is found in the active sites of a class of superoxide dismutase (SOD), nickel complexes with non-peptidic ligands normally do not catalyze superoxide degradation, and none has displayed activity comparable to those of the best manganese-containing SOD mimics. Here, we find that nickel complexes with polydentate quinol-containing ligands can exhibit catalytic activity comparable to those of the most efficient manganese-containing SOD mimics. The nickel complexes retain a significant portion of their activity in phosphate buffer and under operando conditions and rely on ligand-centered redox processes for catalysis.
View Article and Find Full Text PDFNon-peptide ligands (NPLs), including lipids, amino acids, carbohydrates, and non-peptide neurotransmitters and hormones, play a critical role in ligand-receptor-mediated cell-cell communication, driving diverse physiological and pathological processes. To facilitate the study of NPL-dependent intercellular interactions, we introduce MetaLigand, an R-based and web-accessible tool designed to infer NPL production and predict NPL-receptor interactions using transcriptomic data. MetaLigand compiles data for 233 NPLs, including their biosynthetic enzymes, transporter genes, and receptor genes, through a combination of automated pipelines and manual curation from comprehensive databases.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
Front Immunol
January 2025
Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!