Excessive loading of ligaments can activate the neural afferents that innervate the collagenous tissue, leading to a host of pathologies including pain. An integrated experimental and modeling approach was used to define the responses of neurons and the surrounding collagen fibers to the ligamentous matrix loading and to begin to understand how macroscopic deformation is translated to neuronal loading and signaling. A neuron-collagen construct (NCC) developed to mimic innervation of collagenous tissue underwent tension to strains simulating nonpainful (8%) or painful ligament loading (16%). Both neuronal phosphorylation of extracellular signal-regulated kinase (ERK), which is related to neuroplasticity (R2 ≥ 0.041; p ≤ 0.0171) and neuronal aspect ratio (AR) (R2 ≥ 0.250; p < 0.0001), were significantly correlated with tissue-level strains. As NCC strains increased during a slowly applied loading (1%/s), a "switchlike" fiber realignment response was detected with collagen reorganization occurring only above a transition point of 11.3% strain. A finite-element based discrete fiber network (DFN) model predicted that at bulk strains above the transition point, heterogeneous fiber strains were both tensile and compressive and increased, with strains in some fibers along the loading direction exceeding the applied bulk strain. The transition point identified for changes in collagen fiber realignment was consistent with the measured strain threshold (11.7% with a 95% confidence interval of 10.2-13.4%) for elevating ERK phosphorylation after loading. As with collagen fiber realignment, the greatest degree of neuronal reorientation toward the loading direction was observed at the NCC distraction corresponding to painful loading. Because activation of neuronal ERK occurred only at strains that produced evident collagen fiber realignment, findings suggest that tissue strain-induced changes in the micromechanical environment, especially altered local collagen fiber kinematics, may be associated with mechanotransduction signaling in neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844078PMC
http://dx.doi.org/10.1115/1.4031975DOI Listing

Publication Analysis

Top Keywords

extracellular signal-regulated
8
signal-regulated kinase
8
collagenous tissue
8
tissue strain
4
strain reorganizes
4
reorganizes collagen
4
collagen switchlike
4
switchlike response
4
response regulates
4
neuronal
4

Similar Publications

Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.

View Article and Find Full Text PDF

Nuclear calcium signaling in D1 receptor-expressing neurons of the nucleus accumbens regulates molecular, cellular and behavioral adaptations to cocaine.

Biol Psychiatry

January 2025

Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:

Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).

View Article and Find Full Text PDF

This study aimed to develop novel hydrogels using polycaprolactone (PCL), nano-silver (Ag), and linalool (Lin) to address the challenge of increasing antimicrobial resistance in healing infected wounds. The hydrogels' morphological properties, in vitro release profiles, antibacterial efficacy, and safety were investigated. Hydrogels were prepared from PCL/Ag, PCL/Lin, and PCL/Ag/Lin formulations and applied to infected wounds.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

ZDHHC2 promoted antimycobacterial responses by selective autophagic degradation of B-RAF and C-RAF in macrophages.

Sci Adv

January 2025

Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.

S-Palmitoylation is a reversible post-translational modification involving saturated fatty acid palmitate-to-cysteine linkage in the protein, which guides many aspects of macrophage physiology in health and disease. However, the precise role and underlying mechanisms of palmitoylation in infection of macrophages remain elusive. Here, we found that infection induced the expression of zinc-finger DHHC domain-type palmitoyl-transferases (ZDHHCs), particularly ZDHHC2, in mouse macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!