Bacteria and fungi can secrete extracellular enzymes to convert macromolecules into smaller units. Hyperproduction of extracellular enzymes is often associated with alterations in cell wall structure in fungi. Recently, we identified that Saccharomyces cerevisiae kre6Δ mutants can efficiently convert mogroside V into mogroside III E, which has antidiabetic properties. However, the underlying efficient bioconversion mechanism is unclear. In the present study, the mogroside (MG) bioconversion properties of several cell wall structure defective mutants were analyzed. We also compared the cell walls of these mutants by transmission electron microscopy, a zymolyase sensitivity test, and a mannoprotein release assay. We found zymolyase-sensitive mutants (including kre1Δ, las21Δ, gas1Δ, and kre6Δ), with defects in mannoprotein deposition, exhibit efficient MG conversion and excessive leakage of Exg1; such defects were not observed in wild-type cells, or mutants with abnormal levels of glucans in the cell wall. Thus, yeast mutants defective in mannoprotein deposition may be employed to convert glycosylated bioactive compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.5b03909DOI Listing

Publication Analysis

Top Keywords

mannoprotein deposition
12
cell wall
12
saccharomyces cerevisiae
8
mutants defective
8
defective mannoprotein
8
extracellular enzymes
8
wall structure
8
mutants
7
hyperproduction β-glucanase
4
β-glucanase exg1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!