Rapid method of luxS and pfs gene inactivation in enterotoxigenic Escherichia coli and the effect on biofilm formation.

Mol Med Rep

Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China.

Published: January 2016

Rapid and efficient inactivation of a target gene in Escherichia coli chromosomes is required to investigate metabolic engineering. In the present study, a multiple gene inactivation approach was demonstrated in four strains of enterotoxigenic E. coli (ETEC), which are the predominant pathogenic bacteria causing piglet diarrhea, mediated by λ Red and Xer recombination. The chromosomal genes, luxS and pfs were inactivated using the multiple gene inactivation approach in the wild‑type strains of E. coli, K88, K99, 987P and F41. This indicated that dif sites may be reused to inactivate multiple chromosomal genes when no antibiotic‑resistant selectable markers remain. Following inactivation of luxS and pfs, the ability of ETEC to produce the quorum sensing signal, and induce auto‑inducer 2 activity and biofilm formation were significantly reduced. Furthermore, the multiple gene inactivation approach also exhibits a high recombination efficiency and follows a simple process.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.4532DOI Listing

Publication Analysis

Top Keywords

gene inactivation
16
luxs pfs
12
multiple gene
12
inactivation approach
12
escherichia coli
8
biofilm formation
8
chromosomal genes
8
inactivation
6
gene
5
rapid method
4

Similar Publications

tRNA gene content, structure, and organization in the flowering plant lineage.

Front Plant Sci

December 2024

National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.

Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.

View Article and Find Full Text PDF

Inactivation of disease alleles by allele-specific editing is a promising approach to treat dominant-negative genetic disorders, provided the causative gene is haplo-sufficient. We previously edited a dominant missense mutation with inactivating frameshifts and rescued disease-relevant phenotypes in induced pluripotent stem cell (iPSC)-derived motor neurons. However, a multitude of different missense mutations cause disease.

View Article and Find Full Text PDF

Unlabelled: Pain therapies that alleviate both pain and sleep disturbances may be the most effective for pain relief, as both chronic pain and sleep loss render the opioidergic system, targeted by opioids, less sensitive and effective for analgesia. Therefore, we first studied the link between sleep disturbances and the activation of nociceptors in two acute pain models. Activation of nociceptors in both acute inflammatory (AIP) and opto-pain models led to sleep loss, decreased sleep spindle density, and increased sleep fragmentation that lasted 3 to 6 hours.

View Article and Find Full Text PDF

Background: Atypical teratoid rhabdoid tumor (ATRT) is the most common malignant brain tumor in infants, and more than 60% of children with ATRT die from their tumor. ATRT is associated with mutational inactivation/deletion of , a member of the SWI/SNF chromatin remodeling complex, suggesting that epigenetic events play a critical role in tumor development and progression. Moreover, disruption of SWI/SNF allows unopposed activity of epigenetic repressors, which contribute to tumorigenicity.

View Article and Find Full Text PDF

SQLE-mediated squalene metabolism promotes tumor immune evasion in pancreatic cancer.

Front Immunol

January 2025

Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.

Background: Squalene epoxidase (SQLE) is a key enzyme in cholesterol biosynthesis and has been shown to negatively affect tumor immunity and is associated with poor outcomes of immunotherapy in various cancers. While most research in this area has focused on the impact of cholesterol on immune functions, the influence of SQLE-mediated squalene metabolism within the tumor immune microenvironment (TIME) remains unexplored.

Methods: We established an immune-competent mouse model (C57BL/6) bearing mouse pancreatic cancer xenografts (KPC cells) with or without stable SQLE-knockdown (SQLE-KD) to evaluate the impact of SQLE-mediated metabolism on pancreatic cancer growth and immune functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!