Background: Azaheterocycles are an important class of compounds because of their highly potent medicinal activities, and the imidazole subcategory is of special interest in regard to drug discovery research.
Findings: An expeditious synthetic protocol of 2-aryl-4-phenyl-1H-imidazoles has been accomplished by reacting phenylglyoxal monohydrate, ammonium acetate, and aldehyde under sonication. Following this green approach a series of 2-aryl-4-phenyl-1H-imidazoles has been synthesized using diversely substituted aldehydes.
Conclusions: A rapid and simple synthetic procedure to synthesize diversely substituted 2-aryl-4-phenyl-1H-imidazoles has been reported. Other salient features of this protocol include milder conditions, atom-economy, easy extraction, and minimum wastes. The present procedure may find application in the synthesis of biologically active molecules. Graphical Abstract An expeditious synthetic protocol of 2-aryl-4-phenyl-1H-imidazoles has been accomplished by reacting phenylglyoxal monohydrate, ammonium acetate, and diversely substituted aldehydes under sonication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610115 | PMC |
http://dx.doi.org/10.1186/s13588-014-0009-7 | DOI Listing |
BMC Chem
January 2025
The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.
Foods
January 2025
Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia.
The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method.
View Article and Find Full Text PDFMolecules
December 2024
School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan.
It is established that reverse hydroxamate analogs of fosmidomycin inhibit the growth of by inhibiting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the non-mevalonate pathway, which is absent in humans. Recent biochemical studies have demonstrated that novel reverse fosmidomycin analogs with phenylalkyl substituents at the hydroxamate nitrogen exhibit inhibitory activities against DXR at the nanomolar level. Moreover, crystallographic analyses have revealed that the phenyl moiety of the -phenylpropyl substituent is accommodated in a previously unidentified subpocket within the active site of DXR.
View Article and Find Full Text PDFMolecules
December 2024
Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan.
YKL-40 is structurally similar to chitotriosidase (CHIT1), an active chitinase, but it lacks chitin-degrading activity while retaining chitin-binding capability. Elevated YKL-40 levels are associated with inflammatory diseases and cancers, making it a valuable biomarker. We previously reported that the W69T substitution in YKL-40 significantly reduces its chitin-binding affinity, identifying W69 as a crucial binding site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!