An expeditious green route toward 2-aryl-4-phenyl-1H-imidazoles.

Org Med Chem Lett

Department of Chemistry, The University of Texas-Pan American, 1201 West University Drive, Edinburg, TX, 78539, USA.

Published: December 2014

Background: Azaheterocycles are an important class of compounds because of their highly potent medicinal activities, and the imidazole subcategory is of special interest in regard to drug discovery research.

Findings: An expeditious synthetic protocol of 2-aryl-4-phenyl-1H-imidazoles has been accomplished by reacting phenylglyoxal monohydrate, ammonium acetate, and aldehyde under sonication. Following this green approach a series of 2-aryl-4-phenyl-1H-imidazoles has been synthesized using diversely substituted aldehydes.

Conclusions: A rapid and simple synthetic procedure to synthesize diversely substituted 2-aryl-4-phenyl-1H-imidazoles has been reported. Other salient features of this protocol include milder conditions, atom-economy, easy extraction, and minimum wastes. The present procedure may find application in the synthesis of biologically active molecules. Graphical Abstract An expeditious synthetic protocol of 2-aryl-4-phenyl-1H-imidazoles has been accomplished by reacting phenylglyoxal monohydrate, ammonium acetate, and diversely substituted aldehydes under sonication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610115PMC
http://dx.doi.org/10.1186/s13588-014-0009-7DOI Listing

Publication Analysis

Top Keywords

diversely substituted
12
expeditious synthetic
8
synthetic protocol
8
protocol 2-aryl-4-phenyl-1h-imidazoles
8
2-aryl-4-phenyl-1h-imidazoles accomplished
8
accomplished reacting
8
reacting phenylglyoxal
8
phenylglyoxal monohydrate
8
monohydrate ammonium
8
ammonium acetate
8

Similar Publications

Adaptive alcohols-alcohols cross-coupling via TFA catalysis: access of unsymmetrical ethers.

BMC Chem

January 2025

The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.

Article Synopsis
  • Ethers are important organic compounds used in various industries, including pharmaceuticals and materials.
  • The study presents a method using TFA as a catalyst to efficiently create unsymmetrical ethers from alcohols and different oxygen nucleophiles under mild conditions.
  • This method shows high efficiency, with notable yields and practicality for large-scale production, demonstrating its potential for industrial applications.
View Article and Find Full Text PDF

The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method.

View Article and Find Full Text PDF

It is established that reverse hydroxamate analogs of fosmidomycin inhibit the growth of by inhibiting 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), the second enzyme of the non-mevalonate pathway, which is absent in humans. Recent biochemical studies have demonstrated that novel reverse fosmidomycin analogs with phenylalkyl substituents at the hydroxamate nitrogen exhibit inhibitory activities against DXR at the nanomolar level. Moreover, crystallographic analyses have revealed that the phenyl moiety of the -phenylpropyl substituent is accommodated in a previously unidentified subpocket within the active site of DXR.

View Article and Find Full Text PDF

The serine/threonine kinase CK2 (formerly known as casein kinase II) plays a crucial role in various CNS disorders and is highly expressed in various types of cancer. Therefore, inhibiting this key kinase could be promising for the treatment of these diseases. The CK2 holoenzyme is formed by the recruitment of two catalytically active CK2α and/or CK2α' subunits by a regulatory CK2β dimer.

View Article and Find Full Text PDF

YKL-40 is structurally similar to chitotriosidase (CHIT1), an active chitinase, but it lacks chitin-degrading activity while retaining chitin-binding capability. Elevated YKL-40 levels are associated with inflammatory diseases and cancers, making it a valuable biomarker. We previously reported that the W69T substitution in YKL-40 significantly reduces its chitin-binding affinity, identifying W69 as a crucial binding site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!