MicroRNAs (miRNAs) are known to play diverse roles in the regulation of vertebrate development. To investigate miRNA-target mRNA relationships in embryonic development, we have carried out small-RNA sequencing to identify miRNAs expressed in the early gastrula of Xenopus laevis. We identify a total of 180 miRNAs, and we have identified the locations of the miRNA precursor sequences in the X. laevis genome. Of these miRNAs, 141 represent miRs previously identified in Xenopus tropicalis. Alignment to human miRNAs led to the identification of 39 miRNAs that have not previously been described for Xenopus. We have also used a biochemical approach to isolate mRNAs that are associated with the RNA-Induced Silencing Complex (RISC) in early gastrulae and thus candidate targets of miRNA-dependent regulation. Interrogation of this RISC-associated mRNA pool by RT-PCR indicates that a number of genes essential for early patterning and specification may be under regulation by miRNAs. Smad1 transcripts are associated with the RISC; target prediction algorithms identify a single miRNA-binding site for miR-26, which is common to the 3'UTRs of Smad1a and Smad1b. Disruption of the interaction between miR-26 and the Smad1 3'UTR via a Target Protector Morpholino Oligonucleotide (TPMO) leads to a 2-fold increase in Smad1 protein accumulation, moderate increases in the expression of BMP4/Smad1 target genes, and a reduction in organizer gene expression, as well as a partially ventralized phenotype in approximately 25% of embryos. Overexpression of miR-26 resulted in moderately decreased expression of Smad1-dependent genes and an expansion of the region expressing the Organizer gene not1. Our findings indicate that interactions between miR-26 and the Smad1 3'UTR modulate Smad1 function in the establishment of axial patterning; they also establish a foundation for the functional analysis of miRNAs and their regulatory interactions during gastrulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2015.11.005DOI Listing

Publication Analysis

Top Keywords

mirnas
8
mir-26 smad1
8
smad1 3'utr
8
organizer gene
8
smad1
6
mir-26
5
identification micrornas
4
micrornas microrna
4
microrna targets
4
xenopus
4

Similar Publications

Hepatocellular carcinoma (HCC) is a malignant tumour that poses a serious threat to human health and places a heavy burden on individuals and society. However, the role of GPC1 in the malignant progression of HCC is unknown. In this study, we analysed the expression of GPC1 in HCC, and its association with poor patient prognosis.

View Article and Find Full Text PDF

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.

View Article and Find Full Text PDF

This study identifies microRNAs (miRNAs) with significant discriminatory power in distinguishing melanoma from nevus, notably hsa-miR-26a and hsa-miR-211, which have exhibited diagnostic potential with accuracy of 81% and 78% respectively. To enhance diagnostic accuracy, we integrated miRNAs into various machine-learning (ML) models. Incorporating miRNAs with AUC scores above 0.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

Wings are important organs of insects involved in flight, mating, and other behaviors, and are therefore prime targets for pest control. The formation of insect wings is a complex process that is regulated by multiple pathways. The Hedgehog (Hh) pathway regulates the distribution of wing veins, while the Hippo pathway modulates wing size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!