Dietary nutrients may play a vital role in protecting the brain from age-related memory dysfunction and neurodegenerative diseases. Tree nuts including almonds have shown potential to combat age-associated brain dysfunction. These nuts are an important source of essential nutrients, such as tocopherol, folate, mono- and poly-unsaturated fatty acids, and polyphenols. These components have shown promise as possible dietary supplements to prevent or delay the onset of age-associated cognitive dysfunction. This study investigated possible protective potential of almond against scopolamine induced amnesia in rats. The present study also investigated a role of acetylcholine in almond induced memory enhancement. Rats in test group were orally administrated with almond suspension (400 mg/kg/day) for four weeks. Both control and almond-treated rats were then divided into saline and scopolamine injected groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM) and novel object recognition (NOR) task. Cholinergic function was determined in terms of hippocampal and frontal cortical acetylcholine content and acetylcholinesterase activity. Results of the present study suggest that almond administration for 28 days significantly improved memory retention. This memory enhancing effect of almond was also observed in scopolamine induced amnesia model. Present study also suggests a role of acetylcholine in the attenuation of scopolamine induced amnesia by almond.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2015.11.001DOI Listing

Publication Analysis

Top Keywords

scopolamine induced
12
induced amnesia
12
memory
8
study investigated
8
role acetylcholine
8
almond
6
scopolamine
6
rats
5
repeated administration
4
administration almonds
4

Similar Publications

Ethnopharmacological Relevance: Dihuang Drink (DHD), formulated by Liu Hejian during the Yuan Dynasty, is listed as one of the first ancient classical prescriptions by the National Medical Products Administration of China. It is commonly used for the prevention and treatment of Alzheimer's disease (AD). This study further investigates the therapeutic effects and potential mechanisms of DHD in AD.

View Article and Find Full Text PDF

Water-Soluble Ginseng Oligosaccharides Prevent Scopolamine-Induced Cholinergic Dysfunction and Inflammatory Cytokine Overexpression.

Cell Biochem Biophys

January 2025

Department of Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, Jilin, China.

Cholinergic deficiency and neuroinflammation are the two main factors of Alzheimer's disease. Recent studies have shown that water-soluble ginseng oligosaccharides (WGOS) derived from Panax ginseng roots can protect against scopolamine-induced impairments in learning and memory. However, the fundamental mechanisms remain unclear for the most part.

View Article and Find Full Text PDF

Clinical Manifestations.

Alzheimers Dement

December 2024

Suven Life Sciences, Hyderabad, Telangana, India.

Background: Centrally acting muscarinic acetylcholine receptor antagonists like atropine and scopolamine can induce psychosis-like symptoms. Xanomeline, a muscarinic M1/M4 preferring agonist attenuated the effects of amphetamine (animal model for schizophrenia) in the wild-type mice, however, such effects were absent in muscarinic M4 knockout mice. In addition, xanomeline was also found to be effective in attenuating neuropsychiatric symptoms.

View Article and Find Full Text PDF

Objective: Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M and M receptors. M receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M receptors on cholinergic neurons has been less explored.

View Article and Find Full Text PDF

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!