2-Arylquinazolin-4(3H)-ones: A novel class of thymidine phosphorylase inhibitors.

Bioorg Chem

H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21412, Saudi Arabia. Electronic address:

Published: December 2015

AI Article Synopsis

  • Thymidine phosphorylase (TP) is linked to several diseases like rheumatoid arthritis and cancer, making it an important target for drug development.
  • A study tested twenty-five new compounds for their ability to inhibit TP, with six showing promising activity, particularly compound 5 which had an IC50 value close to the standard inhibitor.
  • The most active compounds were further analyzed for their inhibition mechanisms and were found to be non-toxic to mouse fibroblast cells, suggesting potential for future therapeutic development.

Article Abstract

Thymidine phosphorylase (TP) over expression plays an important role in several pathological conditions, such as rheumatoid arthritis, chronic inflammatory diseases, psoriasis, and tumor angiogenesis. In this regard, a series of twenty-five 2-arylquinazolin-4(3H)-one derivatives 1-25 were evaluated for thymidine phosphorylase inhibitory activity. Six compounds 5, 6, 20, 2, 23, and 3 were found to be active against thymidine phosphorylase enzyme with IC50 values in the range of 42.9-294.6μM. 7-Deazaxanthine (IC50=41.0±1.63μM) was used as a standard inhibitor. Compound 5 showed a significant activity (IC50=42.9±1.0μM), comparable to the standard. The enzyme kinetic studies on the most active compounds 5, 6, and 20 were performed for the determination of their modes of inhibition, and dissociation constants Ki. All active compounds were found to be largely non-cytotoxic against the mouse fibroblast 3T3 cell line. This study identifies a novel class of thymidine phosphorylase inhibitors which may be further investigated as leads to develop therapeutic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2015.10.006DOI Listing

Publication Analysis

Top Keywords

thymidine phosphorylase
20
novel class
8
class thymidine
8
phosphorylase inhibitors
8
active compounds
8
thymidine
5
phosphorylase
5
2-arylquinazolin-43h-ones novel
4
inhibitors thymidine
4
phosphorylase expression
4

Similar Publications

Beyond Chemotherapy: Exploring 5-FU Resistance and Stemness in Colorectal Cancer.

Eur J Pharmacol

January 2025

School of Biotechnology, KIIT Deemed to be University, Bhubaneswar - 751024, Odisha, India. Electronic address:

Article Synopsis
  • Colorectal cancer (CRC) presents ongoing global health challenges, particularly in overcoming treatment resistance in cancer stem cells (CSCs) and the limitations of 5-fluorouracil (5-FU) therapy.
  • Combination therapies and targeted treatments, such as FOLFOXIRI and various monoclonal antibodies, can boost the effectiveness of 5-FU, especially in specific tumor types, but come with considerable toxicity.
  • Advances in personalized medicine, immunotherapy, and nanomedicine are vital for improving treatment outcomes by addressing the complexities of CRC and enhancing drug delivery while reducing resistance to conventional therapies.
View Article and Find Full Text PDF

Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position 7, the carboxylic acid group at position 3, or both. It further investigates the mechanisms by which these derivatives fight cancer, such as inducing apoptosis, arresting the cell cycle, inhibiting topoisomerase I and II, preventing tubulin polymerization, suppressing interleukin 6, blocking thymidine phosphorylase, inhibiting multidrug resistance proteins, and hindering angiogenesis.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Eradication of Cancer Cells Using Doxifluridine and Mesenchymal Stem Cells Expressing Thymidine Phosphorylase.

Bioengineering (Basel)

November 2024

Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA.

Gene-directed enzyme prodrug therapy (GDEPT) has been developed over several decades as a targeted cancer treatment aimed at minimizing toxicity to healthy cells. This approach involves three key components: a non-toxic prodrug, a gene encoding an enzyme that converts the prodrug into an active chemotherapy drug, and a gene carrier to target cancer cells. In this study, the prodrug doxifluridine was enzymatically converted into the chemotherapy drug 5-fluorouracil via thymidine phosphorylase, using human mesenchymal stem cells (hMSCs) as delivery vehicles.

View Article and Find Full Text PDF

Although the phase III SUNLIGHT trial has demonstrated the survival benefit of the addition of bevacizumab (Bmab) to trifluridine/thymidine phosphorylase inhibitor (FTD/TPI), neutropenia, which frequently occurs during FDT/TPI + Bmab therapy, is a concern for clinicians. As TPI is excreted by the kidneys, the risk of adverse events is likely to be high in patients with an impaired renal function. This study aimed to investigate the relationship between renal impairment and the incidence of chemotherapy-induced neutropenia during FTD/TPI + Bmab therapy using real-world data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!