Background: Rare mutations in surfactant-associated genes contribute to neonatal respiratory distress syndrome. The frequency of mutations in these genes in the Chinese population is unknown.
Methods: We obtained blood spots from the Guangxi Neonatal Screening Center in Nanning, China that included Han (n=443) and Zhuang (n=313) ethnic groups. We resequenced all exons of the surfactant proteins-B (SFTPB), -C (SFTPC), and the ATP-binding cassette member A3 (ABCA3) genes and compared the frequencies of 5 common and all rare variants.
Results: We found minor differences in the frequencies of the common variants in the Han and Zhuang cohorts. We did not find any rare mutations in SFTPB or SFTPC, but we found three ABCA3 mutations in the Han [minor allele frequency (MAF)=0.003] and 7 in the Zhuang (MAF=0.011) cohorts (P=0.10). The ABCA3 mutations were unique to each cohort; five were novel. The collapsed carrier rate of rare ABCA3 mutations in the Han and Zhuang populations combined was 1.3%, which is significantly lower than that in the United States (P<0.001).
Conclusion: The population-based frequency of mutations in ABCA3 in south China newborns is significantly lower than that in United States. The contribution of these rare ABCA3 mutations to disease burden in the south China population is still unknown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12519-015-0047-x | DOI Listing |
BMC Pediatr
January 2025
Department of Pediatrics II (Neonatology), Medical University of Innsbruck, Innsbruck, Austria.
Preterm infants are at high risk of developing respiratory distress syndrome (RDS). Mutations in the genes encoding for surfactant proteins B and C or the ATP-binding cassette transporter A3 (ABCA3) are rare but known to be associated with severe RDS and interstitial lung diseases. The exact prevalence of these mutations in the general population is difficult to determine, as they are usually studied in connection with clinical symptoms.
View Article and Find Full Text PDFBMJ Case Rep
October 2024
Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.
We describe a late preterm neonate presenting with respiratory distress syndrome (RDS), homozygous for the E292V missense mutation in the ATP-binding cassette subfamily A, member 3 gene. The neonate improved with supportive care. The E292V variant is the most common mutation in ABCA3, which is essential in surfactant synthesis.
View Article and Find Full Text PDFBiomedicines
October 2024
Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania.
Respiratory distress syndrome (RDS) is the primary cause of respiratory failure in preterm infants, but it also affects 5-7% of term infants. Dysfunctions in pulmonary surfactant metabolism, resulting from mutations of the lung surfactant genes, are rare diseases, ranging from fatal neonatal RDS to interstitial lung disease, associated with increased morbidity and mortality. This study aims to clarify the clinical significance of ABCA3 variants found in a specific family case, as existing data in the literature are inconsistent.
View Article and Find Full Text PDFMutations in ABCA3 can result in surfactant deficiency, leading to respiratory distress syndrome in term neonates, and interstitial lung disease (ILD) in children. Here, we report an extremely rare case of ILD in an identical twin with novel ABCA3 germline mutations. Interestingly, they showed mostly similar, but slightly different, clinical features.
View Article and Find Full Text PDFTranspl Immunol
August 2024
Lung Transplant Center, Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China. Electronic address:
The ATP-binding cassette subfamily A member 3 (ABCA3) protein plays a fundamental role in surfactant homeostasis. Most children with ABCA3 gene mutations develop pulmonary interstitial fibrosis leading to the development of interstitial lung disease. Since traditional medicine does not offer effective therapy, the best option is lung transplantations, especially bilateral lung transplantations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!