The Inhibitory Mechanism of the ζ Subunit of the F1FO-ATPase Nanomotor of Paracoccus denitrificans and Related α-Proteobacteria.

J Biol Chem

the Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, D.F., CP 04510, México.

Published: January 2016

AI Article Synopsis

  • The ζ subunit functions as a novel inhibitor of the F1FO-ATPase in Paracoccus denitrificans and shows structural differences compared to other known inhibitors like mitochondrial IF1 and bacterial ϵ.
  • The N terminus of ζ blocks the rotation of the γ subunit by fitting into specific sites within the F1-ATPase, preventing further rotation and effectively inhibiting ATP synthesis.
  • The interaction of ζ at the rotor/stator interface highlights a unique regulatory mechanism, suggesting the role of ζ in enhancing ATP synthase activity while differentiating from other inhibitors found in mitochondria and bacteria.

Article Abstract

The ζ subunit is a novel inhibitor of the F1FO-ATPase of Paracoccus denitrificans and related α-proteobacteria. It is different from the bacterial (ϵ) and mitochondrial (IF1) inhibitors. The N terminus of ζ blocks rotation of the γ subunit of the F1-ATPase of P. denitrificans (Zarco-Zavala, M., Morales-Ríos, E., Mendoza-Hernández, G., Ramírez-Silva, L., Pérez-Hernández, G., and García-Trejo, J. J. (2014) FASEB J. 24, 599-608) by a hitherto unknown quaternary structure that was first modeled here by structural homology and protein docking. The F1-ATPase and F1-ζ models of P. denitrificans were supported by cross-linking, limited proteolysis, mass spectrometry, and functional data. The final models show that ζ enters into F1-ATPase at the open catalytic αE/βE interface, and two partial γ rotations lock the N terminus of ζ in an "inhibition-general core region," blocking further γ rotation, while the ζ globular domain anchors it to the closed αDP/βDP interface. Heterologous inhibition of the F1-ATPase of P. denitrificans by the mitochondrial IF1 supported both the modeled ζ binding site at the αDP/βDP/γ interface and the endosymbiotic α-proteobacterial origin of mitochondria. In summary, the ζ subunit blocks the intrinsic rotation of the nanomotor by inserting its N-terminal inhibitory domain at the same rotor/stator interface where the mitochondrial IF1 or the bacterial ϵ binds. The proposed pawl mechanism is coupled to the rotation of the central γ subunit working as a ratchet but with structural differences that make it a unique control mechanism of the nanomotor to favor the ATP synthase activity over the ATPase turnover in the α-proteobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705375PMC
http://dx.doi.org/10.1074/jbc.M115.688143DOI Listing

Publication Analysis

Top Keywords

mitochondrial if1
12
paracoccus denitrificans
8
denitrificans α-proteobacteria
8
f1-atpase denitrificans
8
subunit
5
denitrificans
5
inhibitory mechanism
4
mechanism subunit
4
subunit f1fo-atpase
4
f1fo-atpase nanomotor
4

Similar Publications

The production of energy in the form of ATP by the mitochondrial ATP synthase must be tightly controlled. One well-conserved form of regulation is mediated via ATPase inhibitory factor 1 (IF1), which governs ATP synthase activity and gene expression patterns through a cytoprotective process known as mitohormesis. In apicomplexans, the processes regulating ATP synthase activity are not fully elucidated.

View Article and Find Full Text PDF

Initiation factors play critical roles in fine-tuning translation initiation, which is the first and the rate-limiting step in protein synthesis. In bacteria, initiation factors, IF1, IF2 and IF3 work in concert to accurately position the initiator tRNA (i-tRNA) in its formyl-aminoacyl form, and the mRNA start codon at the ribosomal P-site, setting the stage for accommodation of the aminoacyl-tRNA in response to the second codon, and formation of the first peptide bond. Among these, IF3 is particularly crucial in ensuring the fidelity of translation initiation as it is involved in the accuracy of the selection of i-tRNA and the start codon.

View Article and Find Full Text PDF

While mechanisms controlling uncoupling protein-1 (UCP1) in thermogenic adipocytes play a pivotal role in non-shivering thermogenesis, it remains unclear whether FFo-ATP synthase function is also regulated in brown adipose tissue (BAT). Here, we show that inhibitory factor 1 (IF1, encoded by Atp5if1), an inhibitor of ATP synthase hydrolytic activity, is a critical negative regulator of brown adipocyte energy metabolism. In vivo, IF1 levels are diminished in BAT of cold-adapted mice compared to controls.

View Article and Find Full Text PDF

F-ATP synthase inhibitory factor 1 and mitochondria-organelle interactions: New insight and implications.

Pharmacol Res

October 2024

Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Anesthesiology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Mitochondria are metabolic hub, and act as primary sites for reactive oxygen species (ROS) and metabolites generation. Mitochondrial Ca uptake contributes to Ca storage. Mitochondria-organelle interactions are important for cellular metabolic adaptation, biosynthesis, redox balance, cell fate.

View Article and Find Full Text PDF

The production of energy in the form of ATP by the mitochondrial ATP synthase must be tightly controlled. One well-conserved form of regulation is mediated via ATPase inhibitory factor 1 (IF1), which governs ATP synthase activity and gene expression patterns through a cytoprotective process known as mitohormesis. In apicomplexans, the processes regulating ATP synthase activity are not fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!