A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thiosulfate Mediates Cytoprotective Effects of Hydrogen Sulfide Against Neuronal Ischemia. | LitMetric

Background: Hydrogen sulfide (H2S) exhibits protective effects in various disease models including cerebral ischemia-reperfusion (I/R) injury. Nonetheless, mechanisms and identity of molecules responsible for neuroprotective effects of H2S remain incompletely defined. In the current study, we observed that thiosulfate, an oxidation product of H2S, mediates protective effects of an H2S donor compound sodium sulfide (Na2S) against neuronal I/R injury.

Methods And Results: We observed that thiosulfate in cell culture medium is not only required but also sufficient to mediate cytoprotective effects of Na2S against oxygen glucose deprivation and reoxygenation of human neuroblastoma cell line (SH-SY5Y) and murine primary cortical neurons. Systemic administration of sodium thiosulfate (STS) improved survival and neurological function of mice subjected to global cerebral I/R injury. Beneficial effects of STS, as well as Na2S, were associated with marked increase of thiosulfate, but not H2S, in plasma and brain tissues. These results suggest that thiosulfate is a circulating "carrier" molecule of beneficial effects of H2S. Protective effects of thiosulfate were associated with inhibition of caspase-3 activity by persulfidation at Cys163 in caspase-3. We discovered that an SLC13 family protein, sodium sulfate cotransporter 2 (SLC13A4, NaS-2), facilitates transport of thiosulfate, but not sulfide, across the cell membrane, regulating intracellular concentrations and thus mediating cytoprotective effects of Na2S and STS.

Conclusions: The protective effects of H2S are mediated by thiosulfate that is transported across cell membrane by NaS-2 and exerts antiapoptotic effects via persulfidation of caspase-3. Given the established safety track record, thiosulfate may be therapeutic against ischemic brain injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845224PMC
http://dx.doi.org/10.1161/JAHA.115.002125DOI Listing

Publication Analysis

Top Keywords

protective effects
16
effects h2s
16
cytoprotective effects
12
effects
11
thiosulfate
10
hydrogen sulfide
8
i/r injury
8
observed thiosulfate
8
effects na2s
8
beneficial effects
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!