The Extracellular Wall-Bound β-N-Acetylglucosaminidase from Lactobacillus casei Is Involved in the Metabolism of the Human Milk Oligosaccharide Lacto-N-Triose.

Appl Environ Microbiol

Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Valencia, Spain

Published: January 2016

Human milk oligosaccharides (HMOs) are considered to play a key role in establishing and maintaining the infant gut microbiota. Lacto-N-triose forms part of both type 1 and type 2 HMOs and also of the glycan moieties of glycoproteins. Upstream of the previously characterized gene cluster involved in lacto-N-biose and galacto-N-biose metabolism from Lactobacillus casei BL23, there are two genes, bnaG and manA, encoding a β-N-acetylglucosaminidase precursor and a mannose-6-phosphate isomerase, respectively. In this work, we show that L. casei is able to grow in the presence of lacto-N-triose as a carbon source. Inactivation of bnaG abolished the growth of L. casei on this oligosaccharide, demonstrating that BnaG is involved in its metabolism. Interestingly, whole cells of a bnaG mutant were totally devoid of β-N-acetylglucosaminidase activity, suggesting that BnaG is an extracellular wall-attached enzyme. In addition to hydrolyzing lacto-N-triose into N-acetylglucosamine and lactose, the purified BnaG enzyme also catalyzed the hydrolysis of 3'-N-acetylglucosaminyl-mannose and 3'-N-acetylgalactosaminyl-galactose. L. casei can be cultured in the presence of 3'-N-acetylglucosaminyl-mannose as a carbon source, but, curiously, the bnaG mutant strain was not impaired in its utilization. These results indicate that the assimilation of 3'-N-acetylglucosaminyl-mannose is independent of BnaG. Enzyme activity and growth analysis with a manA-knockout mutant showed that ManA is involved in the utilization of the mannose moiety of 3'-N-acetylglucosaminyl-mannose. Here we describe the physiological role of a β-N-acetylglucosaminidase in lactobacilli, and it supports the metabolic adaptation of L. casei to the N-acetylglucosaminide-rich gut niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711128PMC
http://dx.doi.org/10.1128/AEM.02888-15DOI Listing

Publication Analysis

Top Keywords

lactobacillus casei
8
involved metabolism
8
human milk
8
bnag
8
carbon source
8
bnag mutant
8
bnag enzyme
8
casei
6
extracellular wall-bound
4
β-n-acetylglucosaminidase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!