Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a birth-death-merge data-driven reversible jump (DDRJ) for multiple-QTL mapping where the phenotypic trait is modeled as a linear function of the additive and dominance effects of the unknown QTL genotypes. We compare the performance of the proposed methodology, usual reversible jump (RJ) and multiple-interval mapping (MIM), using simulated and real data sets. Compared with RJ, DDRJ shows a better performance to estimate the number of QTLs and their locations on the genome mainly when the QTLs effect is moderate, basically as a result of better mixing for transdimensional moves. The inclusion of a merge step of consecutive QTLs in DDRJ is efficient, under tested conditions, to avoid the split of true QTL's effects between false QTLs and, consequently, selection of the wrong model. DDRJ is also more precise to estimate the QTLs location than MIM in which the number of QTLs need to be specified in advance. As DDRJ is more efficient to identify and characterize QTLs with smaller effect, this method also appears to be useful and brings contributions to identifying single-nucleotide polymorphisms (SNPs) that usually have a small effect on phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701089 | PMC |
http://dx.doi.org/10.1534/genetics.115.180802 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!