The host chromatin-binding factor LEDGF/p75 interacts with HIV-1 integrase and directs integration to active transcription units. To understand how LEDGF/p75 recognizes transcription units, we sequenced 1 million HIV-1 integration sites isolated from cultured HEK293T cells. Analysis of integration sites showed that cancer genes were preferentially targeted, raising concerns about using lentivirus vectors for gene therapy. Additional analysis led to the discovery that introns and alternative splicing contributed significantly to integration site selection. These correlations were independent of transcription levels, size of transcription units, and length of the introns. Multivariate analysis with five parameters previously found to predict integration sites showed that intron density is the strongest predictor of integration density in transcription units. Analysis of previously published HIV-1 integration site data showed that integration density in transcription units in mouse embryonic fibroblasts also correlated strongly with intron number, and this correlation was absent in cells lacking LEDGF. Affinity purification showed that LEDGF/p75 is associated with a number of splicing factors, and RNA sequencing (RNA-seq) analysis of HEK293T cells lacking LEDGF/p75 or the LEDGF/p75 integrase-binding domain (IBD) showed that LEDGF/p75 contributes to splicing patterns in half of the transcription units that have alternative isoforms. Thus, LEDGF/p75 interacts with splicing factors, contributes to exon choice, and directs HIV-1 integration to transcription units that are highly spliced.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4647561 | PMC |
http://dx.doi.org/10.1101/gad.267609.115 | DOI Listing |
Nucleic Acids Res
December 2024
NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 55 Zhongguancun East Road, Haidian District, Beijing 100190, China.
Topologically associating domains (TADs) are essential components of three-dimensional (3D) genome organization and significantly influence gene transcription regulation. However, accurately identifying TADs from sparse chromatin contact maps and exploring the structural and functional elements within TADs remain challenging. To this end, we develop TADGATE, a graph attention auto-encoder that can generate imputed maps from sparse Hi-C contact maps while adaptively preserving or enhancing the underlying topological structures, thereby facilitating TAD identification.
View Article and Find Full Text PDFMol Cell
December 2024
Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA; Applied Bioinformatics Laboratories, Office of Science and Research, New York University Grossman School of Medicine, New York, NY, USA. Electronic address:
Cancer progression involves genetic and epigenetic changes that disrupt chromatin 3D organization, affecting enhancer-promoter interactions and promoting growth. Here, we provide an integrative approach, combining chromatin conformation, accessibility, and transcription analysis, validated by in silico and CRISPR-interference screens, to identify relevant 3D topologies in pediatric T cell leukemia (T-ALL and ETP-ALL). We characterize 3D hubs as regulatory centers for oncogenes and disease markers, linking them to biological processes like cell division, inflammation, and stress response.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing.
View Article and Find Full Text PDFmBio
December 2024
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic transcription units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and changes in gene expression are entirely post-transcriptional. is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans.
View Article and Find Full Text PDFScience
December 2024
Department of Neurology of Second Affiliated Hospital and Liangzhu Laboratory, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China.
Deciphering the complex interplay between neuronal activity and mitochondrial function is pivotal in understanding brain aging, a multifaceted process marked by declines in synaptic function and mitochondrial performance. Here, we identified an age-dependent coupling between neuronal and synaptic excitation and mitochondrial DNA transcription (E-TC), which operates differently compared to classic excitation-transcription coupling in the nucleus (E-TC). We demonstrated that E-TC repurposes molecules traditionally associated with E-TC to regulate mitochondrial DNA expression in areas closely linked to synaptic activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!