Mutations in the HSD17B3 gene resulting in 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency cause 46, XY Disorders of Sex Development (46, XY DSD). Approximately 40 different mutations in HSD17B3 have been reported; only few mutant enzymes have been mechanistically investigated. Here, we report novel compound heterozygous mutations in HSD17B3, composed of the nonsense mutation C206X and the missense mutation G133R, in three Tunisian patients from two non-consanguineous families. Mutants C206X and G133R were constructed by site-directed mutagenesis and expressed in HEK-293 cells. The truncated C206X enzyme, lacking part of the substrate binding pocket, was moderately expressed and completely lost its enzymatic activity. Wild-type 17β-HSD3 and mutant G133R showed comparable expression levels and intracellular localization. The conversion of Δ4-androstene-3,17-dione (androstenedione) to testosterone was almost completely abolished for mutant G133R compared with wild-type 17β-HSD3. To obtain further mechanistic insight, G133 was mutated to alanine, phenylalanine and glutamine. G133Q and G133F were almost completely inactive, whereas G133A displayed about 70% of wild-type activity. Sequence analysis revealed that G133 on 17β-HSD3 is located in a motif highly conserved in 17β-HSDs and other short-chain dehydrogenase/reductase (SDR) enzymes. A homology model of 17β-HSD3 predicted that arginine or any other bulky residue at position 133 causes steric hindrance of cofactor NADPH binding, whereas substrate binding seems to be unaffected. The results indicate an essential role of G133 in the arrangement of the cofactor binding pocket, thus explaining the loss-of-function of 17β-HSD3 mutant G133R in the patients investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2015.10.023 | DOI Listing |
J Steroid Biochem Mol Biol
January 2016
Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Basel, Switzerland. Electronic address:
Mutations in the HSD17B3 gene resulting in 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency cause 46, XY Disorders of Sex Development (46, XY DSD). Approximately 40 different mutations in HSD17B3 have been reported; only few mutant enzymes have been mechanistically investigated. Here, we report novel compound heterozygous mutations in HSD17B3, composed of the nonsense mutation C206X and the missense mutation G133R, in three Tunisian patients from two non-consanguineous families.
View Article and Find Full Text PDFJ Clin Biochem Nutr
November 2008
Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja-city 719-1197, Japan.
Properties of mutant delta-aminolevulinate dehydratase (ALAD) found in patients with ALAD porphyria were studied by enzymological and immunological analyses after the synthesis of enzyme complexes using a cell-free system. Enzyme activities of homozygous G133R, K59N/G133R, V153M, and E89K mutants were 11%, 22%, 67%, and 75% of the wild-type ALAD, respectively, whereas that of K59N, a normal variant, was 112%. Enzyme activities of L273R, C132R and F12L were undetectable.
View Article and Find Full Text PDFBlood
May 2001
Rockefeller University, New York, NY; Okayama Prefectural University, Okayama, Japan.
The properties of 9 delta-aminolevulinate dehydratase (ALAD) mutants from patients with ALAD porphyria (ADP) were examined by bacterial expression of their complementary DNAs and by enzymologic and immunologic assays. ALADs were expressed as glutathione-S-transferase (GST) fusion proteins in Escherichia coli and purified by glutathione-affinity column chromatography. The GST-ALAD fusion proteins were recognized by anti-ALAD antibodies and were enzymatically active as ALAD.
View Article and Find Full Text PDFBlood
November 2000
The Rockefeller University, New York, NY; Okayama Prefectural University, Soja, Japan.
Cloning, expression, and genotype studies of the defective gene for delta-aminolevulinate dehydratase (ALAD) in a patient with an unusual late onset of ALAD deficiency porphyria (ADP) were carried out. This patient was unique in that he developed the inherited disease, together with polycythemia, at the age of 63. ALAD activity in erythrocytes of the patient was less than 1% of the normal control level.
View Article and Find Full Text PDFAm J Hum Genet
July 1991
Division of Medical and Molecular Genetics, Mount Sinai School of Medicine, New York, NY 10029.
delta-Aminolevulinate dehydratase deficient porphyria, a recently recognized inborn error of heme biosynthesis, results from the markedly deficient activity of the heme biosynthetic enzyme, delta-aminolevulinate dehydratase (ALA-D). The four homozygotes described to date with this disorder have remarkably distinct phenotypes, ranging from a severely affected infant with failure to thrive to an essentially asymptomatic 68-year-old male. To investigate the molecular nature of the lesions causing the severe infantile-onset form, total RNA was isolated from cultured lymphoblasts of the affected homozygote, RNA was reverse-transcribed to cDNA, and the 990-bp ALA-D-coding region was amplified by the PCR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!