With increased histone deacetylase (HDAC) activity and histone hypoacetylation being implicated in neurodegeneration, HDAC inhibitors have been reported to have considerable therapeutic potential. Yet, existing inhibitors lack specificity and may show substantial adverse effect. In this study, we identified a novel HDAC1/2 isoform-specific inhibitor, K560, with protective effects against 1-methyl-4-phenylpyridinium (MPP(+))- and/or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neuronal death in both in vitro and in vivo Parkinson's disease model. K560 attenuated cell death induced by MPP(+) in differentiated SH-SY5Y cells through the sustained expression of an antiapoptotic protein, X-linked inhibitor of apoptosis (XIAP). Inhibition of XIAP expression by locked nucleic acid antisense oligonucleotides abolished the protective effect of K560. Inactivation of mitogen-activated protein kinase cascades, reduced p53 phosphorylation, and down-regulation of p53-upregulated modulator of apoptosis on K560 treatment were also observed. Furthermore, pre- and post-oral administration of K560 to mice prevented MPTP-induced loss of dopaminergic neurons in substantia nigra, suggesting that selective inhibition of HDAC1 and HDAC2 by K560 may pave the way to new strategies for Parkinson's disease treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2015.10.001DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
histone deacetylase
8
isoform-specific inhibitor
8
k560
6
novel histone
4
deacetylase isoform-specific
4
inhibitor alleviates
4
alleviates experimental
4
experimental parkinson's
4
disease increased
4

Similar Publications

Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years.

View Article and Find Full Text PDF

NMDAR antagonists, such as memantine and ketamine, have shown efficacy in treating neurodegenerative diseases and major depression. The mechanism by which these drugs correct the aforementioned diseases is still unknown. Our study reveals that these antagonists significantly enhance 20S proteasome activity, crucial for degrading intrinsically disordered, oxidatively damaged, or misfolded proteins, factors pivotal in neurodegenerative diseases like Alzheimer's and Parkinson's.

View Article and Find Full Text PDF

The Emerging Role of Mitochondria Oxygen Redox in Pathological Progression of Neurodegenerative Disorders.

Ageing Res Rev

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China. Electronic address:

Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington disease, pose serious threats to human health, leading to substantial economic burdens on society and families. Despite extensive research, the underlying mechanisms driving these diseases remain incompletely understood, impeding effective diagnosis and treatment. In recent years, growing evidence has highlighted the crucial role of oxidative stress in the pathogenesis of various neurodegenerative diseases.

View Article and Find Full Text PDF

14-3-3θ phosphorylation exacerbates alpha-synuclein aggregation and toxicity.

Neurobiol Dis

January 2025

Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America. Electronic address:

Aggregation of alpha-synuclein (αsyn) plays an integral role in Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). 14-3-3θ is a highly expressed brain protein with chaperone-like activity that regulates αsyn folding. 14-3-3θ overexpression reduces αsyn aggregation, transmission between cells, and neuronal loss, while 14-3-3 inhibition promotes αsyn pathology.

View Article and Find Full Text PDF

Peripheral blood immune cells from individuals with Parkinson's disease or inflammatory bowel disease share deficits in iron storage and transport that are modulated by non-steroidal anti-inflammatory drugs.

Neurobiol Dis

January 2025

Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA. Electronic address:

Parkinson's Disease (PD) is a multisystem disorder in which dysregulated neuroimmune crosstalk and inflammatory relay via the gut-blood-brain axis have been implicated in PD pathogenesis. Although alterations in circulating inflammatory cytokines and reactive oxygen species (ROS) have been associated with PD, no biomarkers have been identified that predict clinical progression or disease outcome. Gastrointestinal (GI) dysfunction, which involves perturbation of the underlying immune system, is an early and often-overlooked symptom that affects up to 80 % of individuals living with PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!