Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human.

Mol Cell Proteomics

From the ‡Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, 2052, Australia;

Published: January 2016

Eukaryotic elongation factor 1A (eEF1A) is an essential, highly methylated protein that facilitates translational elongation by delivering aminoacyl-tRNAs to ribosomes. Here, we report a new eukaryotic protein N-terminal methyltransferase, Saccharomyces cerevisiae YLR285W, which methylates eEF1A at a previously undescribed high-stoichiometry N-terminal site and the adjacent lysine. Deletion of YLR285W resulted in the loss of N-terminal and lysine methylation in vivo, whereas overexpression of YLR285W resulted in an increase of methylation at these sites. This was confirmed by in vitro methylation of eEF1A by recombinant YLR285W. Accordingly, we name YLR285W as elongation factor methyltransferase 7 (Efm7). This enzyme is a new type of eukaryotic N-terminal methyltransferase as, unlike the three other known eukaryotic N-terminal methyltransferases, its substrate does not have an N-terminal [A/P/S]-P-K motif. We show that the N-terminal methylation of eEF1A is also present in human; this conservation over a large evolutionary distance suggests it to be of functional importance. This study also reports that the trimethylation of Lys(79) in eEF1A is conserved from yeast to human. The methyltransferase responsible for Lys(79) methylation of human eEF1A is shown to be N6AMT2, previously documented as a putative N(6)-adenine-specific DNA methyltransferase. It is the direct ortholog of the recently described yeast Efm5, and we show that Efm5 and N6AMT2 can methylate eEF1A from either species in vitro. We therefore rename N6AMT2 as eEF1A-KMT1. Including the present work, yeast eEF1A is now documented to be methylated by five different methyltransferases, making it one of the few eukaryotic proteins to be extensively methylated by independent enzymes. This implies more extensive regulation of eEF1A by this posttranslational modification than previously appreciated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762513PMC
http://dx.doi.org/10.1074/mcp.M115.052449DOI Listing

Publication Analysis

Top Keywords

elongation factor
12
eef1a
9
n-terminal lysine
8
yeast human
8
n-terminal methyltransferase
8
methylation eef1a
8
eukaryotic n-terminal
8
n-terminal
7
eukaryotic
5
methyltransferase
5

Similar Publications

The genomes of human gut bacteria in the genus Bacteroides include numerous operons for biosynthesis of diverse capsular polysaccharides (CPSs). The first two genes of each CPS operon encode a locus-specific paralog of transcription elongation factor NusG (called UpxY), which enhances transcript elongation, and a UpxZ protein that inhibits noncognate UpxYs. This process, together with promoter inversions, ensures that a single CPS operon is transcribed in most cells.

View Article and Find Full Text PDF

Secondary nucleation is an emerging approach for synthesizing higher-order supramolecular polymers with exciting topologies. However, a detailed understanding of growth processes and the synthesis of homochiral superstructures is yet to be demonstrated. Here, we report the non-covalent synthesis of dendritic homochiral superstructures using NIR triimide dyes as building blocks via a secondary nucleation elongation process.

View Article and Find Full Text PDF

The Russian dandelion () is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) belong to a subfamily of the bHLH transcription factor family and play a pivotal role in plant light signal transduction, hormone signal pathways, and the modulation of plant responses to various abiotic stresses. The soybean (Glycine max) is a significant food crop, providing essential oil and nutrients. Additionally, it is a vital industrial raw material and a lucrative cash crop.

View Article and Find Full Text PDF

Effects of cell shape and nucleus shape on epithelial-mesenchymal transition revealed using chimeric micropatterns.

Biomaterials

December 2024

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China. Electronic address:

Epithelial-mesenchymal transition (EMT) is a key phenotypic switch in cancer metastasis, leading to fatal consequences for patients. Under geometric constraints, the morphology of cancer cells changes in both cellular and subcellular levels, whose effects on EMT are, however, not fully understood. Herein, we designed and fabricated chimeric micropatterns of polystyrene (PS) with adhesion contrast to reveal the impacts of cell shapes and nuclear shapes on EMT in a decoupled way.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!