Purpose: To investigate the genetic and epigenetic landscape of hypodiploid (<45 chromosomes) acute lymphoblastic leukemia (ALL).

Methods: Single nucleotide polymorphism array, whole exome sequencing, RNA sequencing, and methylation array analyses were performed on eleven hypodiploid ALL cases.

Results: In line with previous studies, mutations in IKZF3 and FLT3 were detected in near-haploid (25-30 chromosomes) cases. Low hypodiploidy (31-39 chromosomes) was associated with somatic TP53 mutations. Notably, mutations of this gene were also found in 3/3 high hypodiploid (40-44 chromosomes) cases, suggesting that the mutational patterns are similar in low hypodiploid and high hypodiploid ALL. The high hypodiploid ALLs frequently displayed substantial cell-to-cell variability in chromosomal content, indicative of chromosomal instability; a rare phenomenon in ALL. Gene expression analysis showed that genes on heterodisomic chromosomes were more highly expressed in hypodiploid cases. Cases clustered according to hypodiploid subtype in the unsupervised methylation analyses, but there was no association between chromosomal copy number and methylation levels. A comparison between samples obtained at diagnosis and relapse showed that the relapse did not arise from the major diagnostic clone in 3/4 cases.

Conclusions: Taken together, our data support the conclusion that near-haploid and low hypodiploid ALL are different with regard to mutational profiles and also suggest that ALL cases with high hypodiploidy may harbor chromosomal instability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4767471PMC
http://dx.doi.org/10.18632/oncotarget.6000DOI Listing

Publication Analysis

Top Keywords

genetic epigenetic
8
epigenetic characterization
4
characterization hypodiploid
4
hypodiploid acute
4
acute lymphoblastic
4
lymphoblastic leukemia
4
leukemia purpose
4
purpose investigate
4
investigate genetic
4
epigenetic landscape
4

Similar Publications

Atherosclerotic disease is a major cause of acute cardiovascular events. A deeper understanding of its underlying mechanisms will allow advancing personalized and patient-centered healthcare. Transcriptomic research has proven to be a powerful tool for unravelling the complex molecular pathways that drive atherosclerosis.

View Article and Find Full Text PDF

Introduction: Nasopharyngeal cancer (NPC) is a multifaceted disease characterized by genetic and epigenetic modifications. While Epstein-Barr virus (EBV) infection is a known risk factor, recent studies highlight the significant role of DNA methylation in NPC pathogenesis. Aberrant methylation, particularly at CpG sites, can silence tumour suppressor genes, promoting uncontrolled cell growth.

View Article and Find Full Text PDF

Cheek swabs, heterogeneous samples consisting primarily of buccal epithelial cells, are widely used in pediatric DNA methylation studies and biomarker creation. However, the decrease in buccal proportion with age in adults remains unexamined in childhood. We analyzed cheek swabs from 4626 typically developing children 2-months to 20-years-old.

View Article and Find Full Text PDF

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!