Enzymatic-induced upconversion photoinduced electron transfer for sensing tyrosine in human serum.

Biosens Bioelectron

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.

Published: March 2016

AI Article Synopsis

  • A new nanosensor has been developed to detect tyrosine using a technique called photoinduced electron-transfer (PET) involving NaYF4:Yb, Tm upconversion nanoparticles and melanin-like polymers.
  • The melanin-like films are created by oxidizing tyrosine with the enzyme tyrosinase and deposited on the nanoparticles, leading to a decrease in their fluorescence.
  • The sensor demonstrated a linear response to tyrosine concentrations from 0.8 to 100 μM, with a detection limit of 1.1 μM, and proved effective in detecting tyrosine levels in human serum, showcasing good sensitivity and stability.

Article Abstract

This paper reports a novel nanosensor for tyrosine based on photoinduced electron-transfer (PET) between NaYF4:Yb, Tm upconversion nanoparticles (UCNPs) and melanin-like polymers. Melanin-like films were obtained from catalytic oxidation of tyrosine by tyrosinase, and deposited on the surface of UCNPs, and then quenched the fluorescence of UCNPs. Under the optimized conditions, the fluorescence quenching of UCNPs showed a good linear response to tyrosine concentration in the range of 0.8-100 μΜ with a detection limit of 1.1 μΜ. Meanwhile, it showed good sensitivity, stability and has been successfully applied to the detection of tyrosine in human serum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2015.10.084DOI Listing

Publication Analysis

Top Keywords

tyrosine human
8
human serum
8
tyrosine
5
enzymatic-induced upconversion
4
upconversion photoinduced
4
photoinduced electron
4
electron transfer
4
transfer sensing
4
sensing tyrosine
4
serum paper
4

Similar Publications

Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).

View Article and Find Full Text PDF

Identification of promising dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B inhibitors from selected terpenoids through molecular modeling.

Bioinform Adv

December 2024

Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.

Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.

Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.

View Article and Find Full Text PDF

Downregulation of MerTK in circulating T cells of patients with non-proliferative diabetic retinopathy.

Front Endocrinol (Lausanne)

January 2025

Department of Ophthalmology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

Objective: To explore the differential gene expression in peripheral blood immune cells of individuals with type 2 diabetes mellitus (DM), comparing those with and without non-proliferative diabetic retinopathy (NPDR).

Methods: From a pool of 126 potential participants, 60 were selected for detailed analysis. This group included 12 healthy donors (HDs), 22 individuals with DM, and 26 with NPDR.

View Article and Find Full Text PDF

New therapeutic agents developed for treating neurological disorders are often tested successfully on rodents. Testing in an appropriate large animal model where there is longer lifespan and comparable brain size to humans should improve translational success and is frequently expected by regulatory bodies. In this project, we aimed to establish a novel sheep model of Parkinson's disease as a large-brained experimental model for translational research.

View Article and Find Full Text PDF

Bisecting GlcNAc modification of vesicular GAS6 regulates CAFs activation and breast cancer metastasis.

Cell Commun Signal

January 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi, 710069, P. R. China.

Background: Cancer-associated fibroblasts (CAFs) are a pivotal component of the tumor microenvironment (TME), playing key roles in tumor initiation, metastasis, and chemoresistance. While glycosylation is known to regulate various cellular processes, its impact on CAFs activation remains insufficiently explored.

Methods: We assessed the correlation between bisecting GlcNAc levels and CAFs markers (α-SMA, PDGFRA, PDGFRB) in breast cancer tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!