Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

PLoS One

National Climate Centre, China Meteorological Administration, Nr. 46, Zhongguancun South Street, Haidian District, Beijing, China.

Published: June 2016

The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636145PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141648PLOS

Publication Analysis

Top Keywords

hydrological droughts
36
climatic hydrological
32
jialing river
16
river basin
16
spei sdi
16
droughts
11
climatic
10
hydrological
10
basin
9
changes relationships
8

Similar Publications

Addressing Water Scarcity to Achieve Climate Resilience and Human Health.

Integr Environ Assess Manag

January 2025

Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.

Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.

View Article and Find Full Text PDF

Songbird reproductive success can decline from consuming mercury-contaminated aquatic insects, but assessments of hydrologic conditions influencing songbird mercury exposure are lacking. We monitored breast feather total mercury (THg) concentrations and reproductive success in the U.S.

View Article and Find Full Text PDF

DeepBase: A Deep Learning-based Daily Baseflow Dataset across the United States.

Sci Data

January 2025

Department of Civil, Construction and Environmental Engineering, University of Alabama, AL, Tuscaloosa, USA.

High quality baseflow data is important for advancing water resources modeling and management, as it captures the critical role of groundwater and delayed sources in contributing to streamflow. Baseflow is the main recharge source of runoff during the dry period, particularly in understanding the interaction between surface water and groundwater systems. This study focuses on estimating baseflow using deep learning algorithms that enhance the estimation capabilities in both gauged and ungauged basins.

View Article and Find Full Text PDF

Assessment of watershed health, integrating environmental, social, and climate change criteria into a fuzzy logic framework.

Sci Total Environ

January 2025

Programas Multidisciplinarios de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #201, 2do Piso, Zona Universitaria, C. P. 78000 San Luis Potosí, Mexico. Electronic address:

Spatio-temporal analyses of environmental and social criteria in the context of climate change, facilitate understanding of how historical and current conditions have influenced watershed health. Previous studies have analyzed watershed health, but very few have integrated fuzzy logic with the CRITIC method (Criteria Importance Through Intercriteria Correlation), which enables us to explore alternatives to improve watershed performance. The objective of this study was to evaluate changes in watershed health through historical and projected climate change scenario in the tropical Santa Cruz watershed in Aquismón, S.

View Article and Find Full Text PDF

Alteration of nitrogen sink and emission by vegetation distribution in a wetland with significant change in water level.

J Environ Manage

December 2024

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:

In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!