Apical Extrusion of Debris Produced during Continuous Rotating and Reciprocating Motion.

ScientificWorldJournal

Department of Operative Dentistry and Endodontics, Dental College of Pernambuco, University of Pernambuco, Avenida Gal Newton Cavalcanti 1650, Tabatinga, 54753-901 Camaragibe, PE, Brazil.

Published: July 2016

This study aimed to analyse and compare apical extrusion of debris in canals instrumented with systems used in reciprocating and continuous motion. Sixty mandibular premolars were randomly divided into 3 groups (n = 20): the Reciproc (REC), WaveOne (WO), and HyFlex CM (HYF) groups. One Eppendorf tube per tooth was weighed in advance on an analytical balance. The root canals were instrumented according to the manufacturer's instructions, and standardised irrigation with 2.5% sodium hypochlorite was performed to a total volume of 9 mL. After instrumentation, the teeth were removed from the Eppendorf tubes and incubated at 37°C for 15 days to evaporate the liquid. The tubes were weighed again, and the difference between the initial and final weight was calculated to determine the weight of the debris. The data were statistically analysed using the Shapiro-Wilk, Wilcoxon, and Mann-Whitney tests (α = 5%). All systems resulted in the apical extrusion of debris. Reciproc produced significantly more debris than WaveOne (p < 0.05), and both systems produced a greater apical extrusion of debris than HyFlex CM (p < 0.001). Cross section and motion influenced the results, despite tip standardization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620270PMC
http://dx.doi.org/10.1155/2015/267264DOI Listing

Publication Analysis

Top Keywords

apical extrusion
16
extrusion debris
16
canals instrumented
8
debris
6
apical
4
debris produced
4
produced continuous
4
continuous rotating
4
rotating reciprocating
4
reciprocating motion
4

Similar Publications

Aims And Background: Failure of the endodontic treatment might be due to various reasons like zipping, apical blockade, ledging, debris extrusion, etc. Apical debris extrusion in primary teeth is of major concern as it does not have a proper well-developed apex, that is, mature apex. This study aims to compare and evaluate the apical debris extrusion in primary molars using three different pediatric rotary file system.

View Article and Find Full Text PDF

Apexification is a crucial procedure for achieving apical healing in non-vital teeth with open apices. Traditionally, calcium hydroxide has been used for this purpose, but it has significant drawbacks, including prolonged treatment duration, increased risk of root fracture, and the potential for porous barrier formation. Mineral trioxide aggregate (MTA) has emerged as a superior alternative due to its biocompatibility, faster setting time, and better sealing properties.

View Article and Find Full Text PDF

This in vitro research assessed the influence of the instrument kinematics (rotary and reciprocating) and the apical preparation limit on the root canal disinfection and apical bacterial extrusion. After 21 days of Enterococcus faecalis biofilm formation in 72 mesial root canals of mandibular molars, the root canals were distributed into 2 groups (n = 36) according to the systems used for preparation: ProDesign S and Reciproc. The groups were redistributed according to the limit of apical preparation (n = 11): (a) 1 mm up to the apical foramen (TL-1); (b) at the apical foramen (TL = 0); (c) 1 mm beyond the apical foramen (TL + 1).

View Article and Find Full Text PDF

Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms.

Bioessays

December 2024

Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA.

Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance.

View Article and Find Full Text PDF

Background: Periapical extrusion of debris for root retreatment will effectively improve the posttreatment inflammation and pain. The aim of this study was to investigate the extruded debris for root retreatment using XP shaper and ProTaper files.

Materials And Methods: In his experimental laboratory study, 40 extracted human maxillary molars were used in this laboratory study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!