This study aimed to analyse the diversity of the Campylobacter jejuni population in broilers and to evaluate the major source of contamination in poultry meat. Eight rearing cycles over one year provided samples from three different broiler farms processed at the same slaughterhouse. A total of 707 C. jejuni were isolated from cloacal swabs before slaughter and from the breast skin of carcasses after slaughter and after chilling. All suspected Campylobacter colonies were identified with PCR assays and C. jejuni was genotyped by sequence analysis of the flaA short variable region (SVR) and by pulsed-field gel electrophoresis (PFGE) using SmaI enzyme. Phenotypic antibiotic resistance profiles were also assayed using minimal inhibitory concentration (MIC). The flocks carried many major C. jejuni clones possibly carrying over the rearing cycles, but cross contamination between farms may happen. Many isolates were resistant to fluoroquinolones, raising an issue of high public concern. Specific Campylobacter populations could be harboured within each poultry farm, with the ability to contaminate chickens during each new cycle. Thus, although biosecurity measures are applied, with a persistent source of contamination, they cannot be efficient. The role of the environment needs further investigation to better address strategies to control Campylobacter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620384 | PMC |
http://dx.doi.org/10.1155/2015/859845 | DOI Listing |
Sci Total Environ
January 2025
Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia. Spain. Electronic address:
Campylobacter spp. and Salmonella spp. are the leading cause of human enteric infections in the European Union.
View Article and Find Full Text PDFSci Rep
January 2025
Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
Antimicrob Agents Chemother
December 2024
National Reference Centre for Campylobacters & Helicobacters, Bordeaux, France.
Front Cell Infect Microbiol
January 2025
Biomedical Research Center, Qatar University, Doha, Qatar.
Angew Chem Int Ed Engl
December 2024
Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
Owing to the inaccessibility of β1-4-N-acetylgalactosaminyltransferase for direct glycan chain elongation, the enzymatic synthesis of 0-series gangliosides with extended backbones has not been explored. In this study, sialic acid was enzymatically introduced as an auxiliary group to overcome the limitation of substrate specificity of Campylobacter jejuni β1-4-N-acetylgalactosaminyltransferase (CjCgtA) to achieve the synthesis of desired extended 0-series ganglioside core structures, and the sialic acid auxiliary group could be removed by sialidase at appropriate stages. A bacterial α2-6-sialyltransferase from Photobacterium damselae (Pd2,6ST) exhibited unexpected acceptor substrate specificity for 0-series ganglioside core structures, providing ready access to complex gangliosides bearing the sialyl N-acetylgalactosamine unit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!