Cardiopulmonary bypass (CPB) is a common practice in our era. The medical technology used for cardiac surgery goes through rigorous testing to ensure its safety. Unfortunately, it is not fail proof. Oxygenator failures are a rare occurrence but may lead to catastrophic events. We present a case where the preparation for initiating CPB was complicated by an oxygenator defect. After thorough examination, the oxygenator was found leaking from the gas exhaust port suggesting a disruption in continuity of the fibers. This was found by the vigilance of the perfusionist and a creative method to quickly assess the integrity of the oxygenation device. We describe a simple technique to help diagnose an oxygenator leak.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631216 | PMC |
Pharmaceuticals (Basel)
December 2024
Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.
Colorectal cancer (CRC) remains a major global health burden, necessitating innovative preventive approaches. (), known for its extensive pharmacological properties, has shown potential in cancer therapy. This study investigates the chemopreventive efficacy of methanolic extract of (MEA) in an azoxymethane (AOM)-induced murine model of CRC, with a focus on its antioxidant, biomarker modulation, and pro-apoptotic activities.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
Rare earth phosphate (XPO) is an extremely important rare earth compound. It can exhibit excellent activity and stability in catalytic applications by modifying its inherent properties. Porous single-crystalline (PSC) PrPO and SmPO with a large surface area consist of ordered lattices and disordered interconnected pores, resulting in activity similar to nanocrystals and stability resembling bulk crystals.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
King Abdulaziz City for Science and Technology (KACST), Microelectronics and Semiconductors Institute, Mailbox 6086, Riyadh 11442, Saudi Arabia.
With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.
The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Material Science and Engineering, Shanghai University, Shanghai 200444, China.
The influence of Mg doping in α-AlO crystals is investigated in this article by first-principles calculations and formation energies, density of states, and computed absorption spectra. Three models related to Mg substituting for Al doping structures were constructed, as well as spinel structure models with varying aluminum-magnesium ratios. The formation energy calculations confirmed the rationality of the MgV model, which means that Mg substitutional doping incorporating oxygen vacancies is most likely to form in crystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!