Recycling organs - growing tailor-made replacement kidneys.

Regen Med

Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157, USA.

Published: November 2015

Download full-text PDF

Source
http://dx.doi.org/10.2217/rme.15.60DOI Listing

Publication Analysis

Top Keywords

recycling organs
4
organs growing
4
growing tailor-made
4
tailor-made replacement
4
replacement kidneys
4
recycling
1
growing
1
tailor-made
1
replacement
1
kidneys
1

Similar Publications

The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.

View Article and Find Full Text PDF

Effects of sewage sludge ash as a recycled phosphorus source on the soil microbiome.

Curr Opin Biotechnol

January 2025

Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA. Electronic address:

Ash byproducts have been used as soil amendments to recycle nutrients and modify soil properties such as pH or density. Interest in these practices has continued with increasing emphasis on sustainability, particularly regarding phosphorus reuse from incinerated sewage sludge. Given recent advancements in microbial analyses, the impacts of these practices can now be studied from the soil microbiome perspective.

View Article and Find Full Text PDF

Complex N-glycans are asparagine (N)-linked branched sugar chains attached to secretory proteins in eukaryotes. They are produced by modification of N-linked oligosaccharide structures in the endoplasmic reticulum (ER) and Golgi apparatus. Complex N-glycans formed in the Golgi apparatus are often assigned specific roles unique to the host organism, with their roles in plants remaining largely unknown.

View Article and Find Full Text PDF

The Critical Role of Autophagy and Phagocytosis in the Aging Brain.

Int J Mol Sci

December 2024

Evergreen World ADHC, Westminster, CA 92844, USA.

As the organism ages, there is a decline in effective energy supply, and this retards the ability to elaborate new proteins. The consequences of this are especially marked in the gradual decline in brain function. The senescence of cells and their constituent organelles is ultimately the cause of aging of the entire nervous system.

View Article and Find Full Text PDF

Structure and catalytic mechanism of exogenous fatty acid recycling by AasS, a versatile acyl-ACP synthetase.

Nat Struct Mol Biol

January 2025

Key Laboratory of Multiple Organ Failure (Ministry of Education), Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Fatty acids (FAs) are essential building blocks for all the domains of life, of which bacterial de novo synthesis, called type II FA synthesis (FAS II), is energetically expensive. The recycling of exogenous FAs (eFAs) partially relieves the FAS II demand and, therefore, compromises the efficacy of FAS II-directed antimicrobials. The versatile acyl-acyl carrier protein (ACP) synthetase, AasS, enables bacterial channeling of diverse eFA nutrients through holo-ACP, an activated form of ACP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!