Cationic amphiphilic drugs enhance entry of lentiviral particles pseudotyped with rabies virus glycoprotein into non-neuronal cells.

Antiviral Res

Department of Gastroenterology, Hepatology and Endocrinology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; Institute for Molecular Biology, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; German Center for Infection Research (DZIF), Carl-Neuberg-Str. 1, 30625 Hannover, Germany. Electronic address:

Published: December 2015

Amiodarone and other cationic amphiphilic drugs (CADs) inhibit cell entry by diverse human pathogenic viruses including Filoviruses, Dengue virus and Japanese encephalitis virus. They are thus considered potential broad spectrum antiviral agents. Here we report the unexpected finding that amiodarone and other CADs markedly enhance rabies virus (RABV) glycoprotein- (GP-) mediated cell entry of pseudotyped lentiviruses into non-neuronal cells but not in neuronal cells. Increased cell entry can also be elicited when CADs are added several hours after pseudoviral attachment. Perturbing endosomal processing with phosphoinosite-3-kinase inhibitors wortmannin and LY294002 mimics the effects of CADs on RABV GP-mediated cell entry. Thus, CADs may enhance RABV GP-mediated cell entry of pseudotyped lentiviruses by promoting a late step of the pseudoviral cell entry process, possibly release from an endosomal compartment into the cytosol. In contrast to the pseudotyped lentiviruses, infection by fully infectious RABV was not enhanced by CADs, indicating, that the observed stimulation of RABV GP mediated lentivirus entry also depended on the used lentivirus vector backbone. In conclusion, we show that while CADs inhibit cell entry of diverse viruses they can also have a paradoxical enhancing effect on the ability of a viral glycoprotein to mediate cell entry depending on the cellular and viral context. Although, we show CAD-mediated enhancement of entry only for pseudoviruses, but not fully infectious RABV, the potential to unexpectedly enhance viral entry should be taken into account when considering use of CADs as antiviral agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2015.10.017DOI Listing

Publication Analysis

Top Keywords

cell entry
32
entry
12
pseudotyped lentiviruses
12
cationic amphiphilic
8
amphiphilic drugs
8
rabies virus
8
non-neuronal cells
8
cads
8
cads inhibit
8
cell
8

Similar Publications

Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.

View Article and Find Full Text PDF

Single-Virus Microscopy of Biochemical Events in Viral Entry.

JACS Au

January 2025

Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, Virginia 22908, United States.

Cell entry by enveloped viruses involves a set of multistep, multivalent interactions between viral and host proteins as well as manipulation of nanoscale membrane mechanics by these interacting partners. A mechanistic understanding of these events has been challenging due to the complex nature of the interactions and the event-to-event heterogeneity involved. Single-virus microscopy has emerged as a powerful technique to probe viral binding and fusion kinetics.

View Article and Find Full Text PDF

Domperidone inhibits dengue virus infection by targeting the viral envelope protein and nonstructural protein 1.

Sci Rep

January 2025

Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Dengue is a mosquito-borne disease caused by dengue virus (DENV) infection, which remains a major public health concern worldwide owing to the lack of specific treatments or antiviral drugs available. This study investigated the potential repurposing of domperidone, an antiemetic and gastrokinetic agent, to control DENV infection. Domperidone was identified by pharmacophore-based virtual screening as a small molecule that can bind to both the viral envelope (E) and the nonstructural protein 1 (NS1) of DENV.

View Article and Find Full Text PDF

Mechanistic study of the effect of a high-salt diet on the intestinal barrier.

Sci Rep

January 2025

School of Health Preservation and Rehabilitation, Chengdu University of TCM, Shierqiao Road, Chengdu, 610075, Sichuan, People's Republic of China.

Despite the established link between chronic high salt diet (HSD) and an increase in gut inflammation, the effect of HSD on the integrity of the intestinal barrier remains understudied. The present study aims to investigate the impact of HSD on the intestinal barrier in rats, encompassing its mechanical, mucous, and immune components. Expression levels of intestinal tight junction proteins and mucin-2 (MUC2) in SD rats were analyzed using immunofluorescence.

View Article and Find Full Text PDF

To overcome the computational barriers of analyzing large-scale single-cell sequencing data, we introduce MetaQ, a metacell algorithm that scales to arbitrarily large datasets with linear runtime and constant memory usage. Inspired by cellular development, MetaQ conceptualizes each metacell as a collective ancestor of biologically similar cells. By quantizing cells into a discrete codebook, where each entry represents a metacell capable of reconstructing the original cells it quantizes, MetaQ identifies homogeneous cell subsets for efficient and accurate metacell inference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!