The PI3K/Akt, p38MAPK, and JAK2/STAT3 signaling pathways mediate the protection of SO2 against acute lung injury induced by limb ischemia/reperfusion in rats.

J Physiol Sci

Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China.

Published: May 2016

Sulfur dioxide (SO2) is naturally synthesized by glutamate-oxaloacetate transaminase (GOT) from L-cysteine in mammalian cells. We found that SO2 may have a protective effect on acute lung injury (ALI) induced by limb ischemia/reperfusion (I/R) in rats. The PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways are crucial in cell signaling transduction. The present study aims to verify the role of SO2 on limb I/R-induced ALI, and investigate whether PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways were involved, as well as the relationship among the three pathways; we used specific inhibitors (LY294002, SB03580, and Stattic) to block them, respectively. The experimental methods of Western, ELISA, TUNEL, etc., were used to test the results. In the I/R group, the parameters of lung injury (MDA, MPO, TUNEL, cytokines) increased significantly, but the administration of Na2SO3/NaHSO3 attenuated the damage in the lung. The Western results showed that the rat's lung exist expression of P-STAT3, P-AKT, and P-p38 proteins. After I/R, P-STAT3, P-Akt, and P-p38 proteins expression all increased. After using Na2SO3/NaHSO3, P-Akt, and P-p38 proteins expression increased, but P-STAT3 protein expression decreased. We also found a strange phenomenon; compared to the I/R + SO2 group, the administration of stattic, P-p38 protein expression showed no change, but P-Akt protein expression increased (p < 0.05). In conclusion, SO2 has a protective effect on rats with limb I/R-induced ALI. The JAK2/STAT3, PI3K/Akt, and p38MAPK pathways are likely all involved in the process, and the JAK2/STAT3 pathway may have an impact on the P13K/Akt pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10716937PMC
http://dx.doi.org/10.1007/s12576-015-0418-zDOI Listing

Publication Analysis

Top Keywords

pi3k/akt p38mapk
16
p38mapk jak2/stat3
12
lung injury
12
p-akt p-p38
12
p-p38 proteins
12
expression increased
12
protein expression
12
acute lung
8
induced limb
8
limb ischemia/reperfusion
8

Similar Publications

Exosome-delivered circular RNAs (circRNAs) are recognized as a key mechanism that regulates osteosarcoma (OS) progression. The purpose of this study is to discover the role of a novel circRNA hsa_circ_0000116 from exosomes in OS progression. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify the exosomes isolated from two OS cell lines (HOS and MG-63).

View Article and Find Full Text PDF

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is known to promote hyperlipidemia primarily by inducing the degradation of the low-density lipoprotein receptor. Notably, recent studies have demonstrated that PCSK9 promotes inflammation in the vascular system, however, the roles of PCSK9 in hepatic inflammation remain unclear. As PCSK9 is primarily expressed in the liver, this study aimed to elucidate the roles of PCSK9 and the underlying mechanisms in lipopolysaccharide (LPS)-challenged hepatocytes.

View Article and Find Full Text PDF

Naringin, a flavanone glycoside found abundantly in citrus fruits, is well-known for its various pharmacological properties, particularly its significant anticancer effects. Research, both in vitro and in vivo, has shown that naringin is effective against several types of cancer, including liver, breast, thyroid, prostate, colon, bladder, cervical, lung, ovarian, brain, melanoma, and leukemia. Its anticancer properties are mediated through multiple mechanisms, such as apoptosis induction, inhibition of cell proliferation, cell cycle arrest, and suppression of angiogenesis, metastasis, and invasion, all while exhibiting minimal toxicity and adverse effects.

View Article and Find Full Text PDF

Autophagy in cholangiocarcinoma: a comprehensive review about roles and regulatory mechanisms.

Clin Transl Oncol

November 2024

Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Renmin Rd, Xiashan District, Zhanjiang, Guangdong, 524000, People's Republic of China.

The role of autophagy in cholangiocarcinogenesis and its development is intricate. Autophagy has a dual role in cholangiocarcinoma, and understanding the function and mechanism of autophagy in cholangiocarcinoma is pivotal in guiding therapeutic approaches to its treatment in clinical settings. Recent studies have revealed that autophagy is involved in the complex biological behavior of cholangiocarcinoma.

View Article and Find Full Text PDF

Background: Hepatic fibrosis, ultimately causing hepatic sclerosis, remains significant health concerns. Adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes (Exo) exhibit amelioration of liver injury. Hepatocyte growth factor (HGF) regulates hepatocyte growthn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!