Objective: Uncontrolled hemorrhage from junctional wounds that cannot be controlled by traditional tourniquets accounts for one in five preventable battlefield exsanguination deaths. Products for treating these wounds are costly and require special training. However, chemically treated gauze products are inexpensive, potentially effective, and require only minimal training. This study was designed to assess the efficacy of three hemostatic gauze products following brief training, using a consensus swine groin injury model.
Methods: After viewing a 15-minute PowerPoint presentation, without demonstration or practice, 24 U.S. Navy Corpsmen, most with little to no live tissue or hemostatic agent experience, applied one of three hemostatic agents: QuikClot Combat Gauze, Celox Trauma Gauze, or Hemcon ChitoGauze. Animals were resuscitated and monitored for 150 minutes to assess initial hemostasis, blood loss, rebleeding, and survival. Participants completed a survey before training and following testing.
Results: Products were similar in initial hemostasis, blood loss, and rebleeding. Twenty-three swine survived (96%). Ease of use and perceived efficacy of training ratings were high. Comfort level with application improved following training.
Conclusions: Hemostatic gauze can potentially be effective for treating junctional wounds following minimal training, which has important implications for corpsmen, self-aid/buddy-aid, civilian providers, and Tactical Combat Casualty Care guidelines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7205/MILMED-D-14-00541 | DOI Listing |
Acta Biomater
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China. Electronic address:
Non-compressible hemostasis and promoting tissue healing are important in soft tissue trauma repair. Inorganic aerogels show superior performance in rapid hemostasis or promoting tissue healing, but simultaneously promoting non-compressive hemostasis and soft tissue healing still remains a challenge. Herein, SiO-based inorganic nanofiber aerogels (M@SiO, M=Ca, Mg, and Sr) were prepared by freeze-drying the mixture of bioactive silicates-deposited SiO nanofibers and SiO sol.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China. Electronic address:
The development of self-elastic sponges with enhanced hemostatic and antibacterial properties to treat noncompressible hemorrhage and facilitate wound healing remains challenging. Herein, we prepared a chitosan sponge reinforced with lauric acid-modified quaternized chitosan (LQC) and attapulgite, features a porous structure, high self-elasticity, and rapid shape recovery. The incorporation of LQC conferred the sponge with an enhanced capacity to promote the adhesion, aggregation, and activation of blood cells, and resistance to infection by Staphylococcus aureus, Escherichia coli, and Methicillin-resistant Staphylococcus aureus; the incorporation of attapulgite enhanced the hydrophilicity and mechanical strength of the sponge, and its ability to activate the intrinsic and extrinsic coagulation pathways.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, P. R. China.
Powdered collagen is emerging as a promising topical hemostat owing to its adaptability to various wounds, active hemostatic abilities, and biosafety. The reproduction of a bionic structure similar to natural collagen is crucial for effective hemostasis and bioactivity. Additional factors relevant to clinical application include antimicrobial properties, minimal immune response, and straightforward preparation.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!