Robust Manipulation of Magnetism in Dilute Magnetic Semiconductor (Ga,Mn)As by Organic Molecules.

Adv Mater

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing, 100083, China.

Published: December 2015

Surface adsorption of organic molecules provides a new method for the robust manipulation of ferromagnetism in (Ga,Mn)As. Electron acceptor and donor molecules yield significant enhancement and suppression, respectively, of ferromagnetism with modulation of the Curie temperature spanning 36 K. Dip-pen nanolithography is employed to directly pattern monolayers on (Ga,Mn)As, which is presented as a novel pathway toward producing magnetic nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201503547DOI Listing

Publication Analysis

Top Keywords

robust manipulation
8
organic molecules
8
manipulation magnetism
4
magnetism dilute
4
dilute magnetic
4
magnetic semiconductor
4
semiconductor gamnas
4
gamnas organic
4
molecules surface
4
surface adsorption
4

Similar Publications

Objective. Assistive robots can be developed to restore or provide more autonomy for individuals with motor impairments. In particular, power wheelchairs can compensate lower-limb impairments, while robotic manipulators can compensate upper-limbs impairments.

View Article and Find Full Text PDF

Development of BCC7051 as a Robust Cell Factory Towards the Transcriptional Regulation of Protease-Encoding Genes for Industrial Applications.

J Fungi (Basel)

December 2024

Functional Ingredients and Food Innovation Research Group (IFIG), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.

Enzyme-mediated protein degradation is a major concern in industrial fungal strain improvement, making low-proteolytic strains preferable for enhanced protein production. Here, we improved food-grade BCC7051 by manipulating the transcriptional regulation of protease-encoding genes. Genome mining of the transcription factor and computational analysis confirmed its deduced amino acid sequence sharing evolutionary conservation across and spp.

View Article and Find Full Text PDF

Quantifying urinary catecholamines and metanephrines is essential for the clinical screening and diagnosis of neuroendocrine tumours. HPLC with electrochemical detection (HPLC-ECD) is commonly used for this type of analysis but requires extensive sample cleanup. Simple and rapid dilute-and-shoot LC-multiple-reaction monitoring (MRM)-MS assays have been developed for quantitating these analytes in urine but have not yet been validated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.

View Article and Find Full Text PDF

Image Encryption Method Based on Three-Dimensional Chaotic Systems and V-Shaped Scrambling.

Entropy (Basel)

January 2025

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.

With the increasing importance of securing images during network transmission, this paper introduces a novel image encryption algorithm that integrates a 3D chaotic system with V-shaped scrambling techniques. The proposed method begins by constructing a unique 3D chaotic system to generate chaotic sequences for encryption. These sequences determine a random starting point for V-shaped scrambling, which facilitates the transformation of image pixels into quaternary numbers.

View Article and Find Full Text PDF

Advancing vaccine technology through the manipulation of pathogenic and commensal bacteria.

Mater Today Bio

December 2024

College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea.

Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!