A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fungal biodegradation of anthracene-polluted cork: A comparative study. | LitMetric

Fungal biodegradation of anthracene-polluted cork: A comparative study.

J Environ Sci Health A Tox Hazard Subst Environ Eng

e Department of Mining Engineering and Natural Resources , Polytechnic University of Catalonia, Manresa , Spain.

Published: July 2016

AI Article Synopsis

  • * Six different fungi were tested for their ability to degrade anthracene, a specific PAH, over a period of 61 days, with varying degradation success rates.
  • * Results show that the non-ligninolytic fungus *Penicillium simplicissimum* was the most efficient at degrading approximately 86% of anthracene, suggesting its potential use for detoxifying PAH-contaminated cork.

Article Abstract

The efficiency of cork waste in adsorbing aqueous polycyclic aromatic hydrocarbons (PAHs) has been previously reported. Biodegradation of contaminated cork using filamentous fungi could be a good alternative for detoxifying cork to facilitate its final processing. For this purpose, the degradation efficiency of anthracene by three ligninolytic white-rot fungi (Phanerochaete chrysosporium, Irpex lacteus and Pleurotus ostreatus) and three non-ligninolytic fungi which are found in the cork itself (Aspergillus niger, Penicillium simplicissimum and Mucor racemosus) are compared. Anthracene degradation by all fungi was examined in solid-phase cultures after 0, 16, 30 and 61 days. The degradation products of anthracene by P. simplicissimum and I. lacteus were also identified by GC-MS and a metabolic pathway was proposed for P. simplicissimum. Results show that all the fungi tested degraded anthracene. After 61 days of incubation, approximately 86%, 40%, and 38% of the initial concentration of anthracene (i.e., 100 µM) was degraded by P. simplicissimum, P. chrysosporium and I. lacteus, respectively. The rest of the fungi degraded anthracene to a lesser extent (<30%). As a final remark, the results obtained in this study indicate that P. simplicissimum, a non-ligninolytic fungi characteristic of cork itself, could be used as an efficient degrader of PAH-contaminated cork.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10934529.2015.1079114DOI Listing

Publication Analysis

Top Keywords

degraded anthracene
8
fungi
6
anthracene
6
cork
5
fungal biodegradation
4
biodegradation anthracene-polluted
4
anthracene-polluted cork
4
cork comparative
4
comparative study
4
study efficiency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!