We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701259 | PMC |
http://dx.doi.org/10.3390/s151127894 | DOI Listing |
Microsyst Nanoeng
January 2025
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array.
View Article and Find Full Text PDFComput Biol Med
January 2025
Laboratory of Metrology and Information Processing, Physics Department, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
Surface electromyography (sEMG), a non-invasive technique, offers the ability to identify insights into the activities of muscles in the form of electrical pulses. During the process of recording, the sEMG signals frequently become contaminated by a multitude of different artifacts, the origin of which may be attributed to numerous sources. These artifacts affect the reliability and accuracy of the pure sEMG activity, and subsequently reduce the quality of analysis and interpretation.
View Article and Find Full Text PDFGait Posture
December 2024
Engineering Research Center of the Ministry of Education for Intelligent Rehabilitation Equipment and Detection Technologies, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Robot Sensing and Human-robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China. Electronic address:
Background: Gait feature recognition is crucial to improve the efficiency and coordination of exoskeleton assistance. The recognition methods based on surface electromyographic (sEMG) signals are popular. However, the recognition accuracy of these methods is poor due to ignoring the correlation of the time series of sEMG signals.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
For surface electromyography (sEMG) based human-machine interaction systems, accurately recognizing the users' gesture intent is crucial. However, due to the existence of subject-specific components in sEMG signals, subject-specific models may deteriorate when applied to new users. In this study, we hypothesize that in addition to subject-specific components, sEMG signals also contain pattern-specific components, which is independent of individuals and solely related to gesture patterns.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical and Aerospace Engineering, University of California, Davis, CA, USA.
Children born with congenital upper limb absence exhibit consistent and distinguishable levels of biological control over their affected muscles, assessed through surface electromyography (sEMG). This represents a significant advancement in determining how these children might utilize sEMG-controlled dexterous prostheses. Despite this potential, the efficacy of employing conventional sEMG classification techniques for children born with upper limb absence is uncertain, as these techniques have been optimized for adults with acquired amputations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!