Background: Aflatoxins (AFs) are secondary hazardous fungal metabolites that are produced by strains of some Aspergillus species on food and feedstuffs. Aflatoxin B1 (AFB1) is one of the most important AF with high toxicity. Prevention of AF production and their elimination from food products is a matter of importance for many researchers in the last decades. Nanomaterials applications in medical science have been widely studied in the recent years. Most of existing researches seek the effect of nanoparticles on bacteria, fungi, and viruses. The aim of this study was to determine the effects of silver nanoparticles (AgNPs) on growth and AFB1 production of AF-producing Aspergillus parasiticus.

Methods: A parasiticus was inoculated (10(6) conidia per ml of medium) to potato dextrose broth (PDB) medium and then AgNPs was added and incubated with shaking at 130 rpm and 28°C for 7 days. AF was assayed by high performance liquid chromatography (HPLC). Microbiological assay (MBA) on microplates contained potato dextrose broth (PDB) medium (4 days at 28°C) at different concentrations of AgNPs (60, 80, 100, 120, 140, 160, 180 and 200 μg/ml) was measured.

Results: The results demonstrated that a minimum inhibition concentration (MIC) equal to 180 μg/ml was determined for AgNPs against A. parasiticus. The AgNPs effectively inhibited AFB1 production at a concentration of 90 μg/ml.

Conclusion: The results obtained in this study show AgNPs at concentrations lower than the MIC drastically inhibited production of AFB1 by A. parasiticus in culture medium. The AgNPs may be useful to control AF contamination of susceptible crops in the field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628140PMC

Publication Analysis

Top Keywords

effects silver
8
silver nanoparticles
8
afb1 production
8
potato dextrose
8
dextrose broth
8
broth pdb
8
pdb medium
8
medium agnps
8
agnps
7
production
5

Similar Publications

The clinical breakpoint for a drug-pathogen combination reflects the drug susceptibility of the pathogen wild-type population, the location of the infection, the integrity of the host immune response, and the drug-pathogen pharmacokinetic (PK)/pharmacodynamic (PD) relationship. That PK/PD relationship, along with the population variability in drug exposure, is used to determine the probability of target attainment (PTA) of the PK/PD index at a specified minimum inhibitory concentration (MIC) for a selected target value. The PTA is used to identify the pharmacodynamic cutoff value (CO), which is one of the three components used to establish the clinical breakpoint.

View Article and Find Full Text PDF

The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).

View Article and Find Full Text PDF

This study assessed the effects of fenobucarb (F) (1%, 10%, and 20% of the LC-96h value) on the brain cholinesterase (AChE) activity, food intake (FI), feed conversion rate (FCR), and growth of silver barb (, Bleeker, 1849). It also assessed the AChE inhibition levels that cause the abnormal swimming, behavior, and mortality of silver barb and how the feeding regime affects the recovery rate of the AChE activity. The results showed that the brain AChE inhibition increased with the F concentrations.

View Article and Find Full Text PDF

Background/objectives: Conventional live oral poliovirus vaccines (OPVs) effectively prevent poliomyelitis. These vaccines are derived from three attenuated Sabin strains of poliovirus, which can revert within the first week of replication to a neurovirulent phenotype, leading to sporadic cases of vaccine-associated paralytic poliomyelitis (VAPP) among vaccinees and their contacts. A novel OPV2 vaccine (nOPV2) with enhanced genetic stability was developed recently; type 1 and type 3 nOPV strains were engineered using the nOPV2 genome as a backbone by replacing the capsid precursor polyprotein (P1) with that of Sabin strains type 1 and type 3, respectively.

View Article and Find Full Text PDF

Background: Shigella infections remain endemic in places with poor sanitation and are a leading cause of diarrheal mortality globally, as well as a major contributor to gut enteropathy and stunting. There are currently no licensed vaccines for shigellosis but it has been estimated that an effective vaccine could avert 590,000 deaths over a 20-year period. A challenge to effective Shigella vaccine development has been the low immunogenicity and protective efficacy of candidate Shigella vaccines in infants and young children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!