As opposed to the standard detective quantum efficiency (DQE), effective DQE (eDQE) is a figure of merit that allows comparing the performances of imaging systems in the presence of scatter rejection devices. The geometry of the EOS™ slot-scanning system is such that the detector is self-collimated and rejects scattered radiation. In this study, the EOS system was characterised using the eDQE in imaging conditions similar to those used in clinical practice: with phantoms of different widths placed in the X-ray beam, for various incident air kerma and tube voltages corresponding to the phantom thickness. Scatter fractions in EOS images were extremely low, around 2 % for all configurations. Maximum eDQE values spanned 9-14.8 % for a large range of air kerma at the detector plane from 0.01 to 1.34 µGy. These figures were obtained with non-optimised EOS setting but still over-performed most of the maximum eDQEs recently assessed for various computed radiology and digital radiology systems with antiscatter grids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncv451 | DOI Listing |
Porto Biomed J
June 2024
Maruemu Works Co, Ltd, Daidou, Japan.
We developed two methods for three-dimensional (3D) evaluation of spinal alignment in standing position by image matching between biplanar x-ray images and 3D vertebral models. One used a Slot-Scanning 3D x-ray Imager (sterEOS) to obtain biplanar x-ray images, and the other used a conventional x-ray system and a rotating table. The 3D vertebral model was constructed from the CT scan data.
View Article and Find Full Text PDFClin Orthop Relat Res
September 2023
Division of Orthopedic Surgery, University of Alberta, AB, Canada.
Background: THA for high-riding developmental dysplasia of the hip (DDH) is challenging in terms of length equalization. Although previous studies suggested preoperative templating on AP pelvic radiographs is insufficient in patients with unilateral high-riding DDH because of hypoplasia of the hemipelvis on the affected side and unequal femoral and tibial length on scanograms, the results were controversial. The EOS™ (EOS™ Imaging) is a biplane X-ray imaging system using slot-scanning technology.
View Article and Find Full Text PDFMed Phys
February 2023
Université Paris-Saclay, CEA, List, Palaiseau, France.
Background: EOSedge™ (EOS Imaging, Paris, France) is an X-ray imaging system using automatic exposure control (AEC) with tube current modulation, in order to optimize dose deposition in patients.
Purpose: This study aims at characterizing EOSedge organ dose deposition in comparison to a digital radiography (DR) system and the previous EOS system (EOS-1st generation), in relation to their respective image quality levels.
Method: Organ doses were measured in an anthropomorphic female adult phantom and a 5-year-old pediatric phantom using optically stimulated luminescence (OSL) dosimeters, which were carefully calibrated within the studied energy range.
BMC Musculoskelet Disord
January 2022
Académie Nationale de Médecine, 16 Rue Bonaparte, 75006, Paris, France.
Background: Whole body standing alignment (WBSA) in terms of biomechanics can be evaluated accurately only by referring the gravity line (GL) which lies on the gravity center (GC). Here, we introduce a method for estimating GL and simultaneous WBSA measurement using the EOS® imaging system and report on the reproducibility and reliability of the method.
Methods: A 3-dimensional (3D) avatar to estimate GC was created following three steps: 3D reconstruction of the bone based on EOS images; deformation into a generic morphotype (MakeHuman statistical model) before density integration with 3D rasterization of the full body into 1-mm voxels (the content of each voxel is considered homogeneous); computation of the density of all the voxels provides the center of mass, which can be projected onto the floor as the GC of the full body, providing the GL in relation to the WBSA.
A new flat detector and pulsed fluoroscopy technology is available to further reduce radiation exposure in radiological monitoring during scoliosis treatment in children and adolescents. The aim of this study is to compare different settings of the system (opening area(OA) and image quality settings (IQS)) in order to find the optimal parameters with high image quality and the lowest possible radiation exposure. Therefore, we examined four cadaver spines (T1 to sacrum) with the flat detector technique using digital pulsed fluoroscopy and simulated the abdominal soft tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!