The forkhead box N1 (Foxn1) protein is the key regulator of thymic epithelial cell (TEC) development, yet how Foxn1 functions remains largely unknown. All mature TECs arise from Foxn1-expressing progenitors/immature TECs and it is widely assumed that TECs as a whole are defined by Foxn1 expression. However, data on the Foxn1 protein are virtually lacking. In this study, we developed novel tools to visualize Foxn1 protein expression at single-cell resolution. We generated Foxn1 knock-in mice expressing a C-terminal hemagglutinin-tagged Foxn1 protein, and a cytometry-grade monoclonal anti-Foxn1 Ab. We evaluated Foxn1 expression patterns in TEC subsets and its dynamics during normal thymus development, aging, injury, and regeneration. Upon challenges, upregulation of Foxn1 was a common feature of thymus regeneration, but the timing of Foxn1 expression changed and the responding TEC subsets depended on the type of treatment. Whereas dexamethasone and recombinant human fibroblast growth factor 7 promoted expansion of Foxn1(+)Ly51(+)CD80(-) TECs, castration led to expansion of Foxn1(+)Ly51(-)CD80(+) TECs. Collectively, Foxn1 expression is highly heterogeneous in the normal thymus, with large fractions of Foxn1(low) or Foxn1(-) TECs accumulating with age. Furthermore, Foxn1 expression is responsive to perturbations.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1502010DOI Listing

Publication Analysis

Top Keywords

foxn1 protein
20
foxn1 expression
20
foxn1
13
protein expression
8
tec subsets
8
normal thymus
8
expression
7
tecs
6
expression developing
4
developing aging
4

Similar Publications

The roles of Forkhead box N1 (FOXN1) in lung squamous cell carcinoma (LUSC) remains elusive. This study was focused on assessing the expression levels of FOXN1 in LUSC and exploring its potential clinical implications. Utilizing a range of databases, this study conducted an analysis of the FOXN1 gene's expression levels, comparing LUSC samples with those from normal lung tissues.

View Article and Find Full Text PDF

Dysbiosis-activated IL-17-producing T cells promote skin immunopathological progression in mice deficient of the Notch ligand Jag1 in keratinocytes.

J Dermatol Sci

October 2024

Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, TX, USA; Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, TX , USA. Electronic address:

Background: The Notch signaling pathway is an evolutionarily conserved regulatory cascade critical in skin development and homeostasis. Mice deficient of Notch signaling molecules have impaired skin and hair follicle development associated with local tissue inflammation. However, mechanisms underlying skin inflammation and pathology resulting from defective Notch signals are not well understood.

View Article and Find Full Text PDF

Background: Foxn1 deficient mice are a rare model of regenerative skin wound healing among mammals. In wounded skin, the transcription factor Foxn1 interacting with hypoxia-regulated factors affects re-epithelialization, epithelial-mesenchymal transition (EMT) and dermal white adipose tissue (dWAT) reestablishment and is thus a factor regulating scar-forming/reparative healing. Here, we hypothesized that transcriptional crosstalk between Foxn1 and Hif-1α controls the switch from scarless (regenerative) to scar-present (reparative) skin wound healing.

View Article and Find Full Text PDF

Age-related epithelial defects limit thymic function and regeneration.

Nat Immunol

September 2024

Translational Science and Therapeutics Division, and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, WA, USA.

The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states.

View Article and Find Full Text PDF

T cell development in the thymus is dependent on the thymic microenvironment, in which thymic epithelial cells (TECs) are the major component. However, TECs undergo both a qualitative and quantitative loss during aging, which is believed to be the major factor responsible for age-dependent thymic atrophy. FOXN1 plays a critical role in TEC development and adult TECs maintenance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!