Living birds constitute the only vertebrate group whose brain volume relative to body size approaches the uniquely expanded values expressed by mammals. The broad suite of complex behaviors exhibited by crown-group birds, including sociality, vocal learning, parental care, and flying, suggests the origins of their encephalization was likely driven by a mosaic of selective pressures. If true, the historical pattern of brain expansion may be more complex than either a gradual expansion, as proposed by early studies of the avian brain, or a sudden expansion correlating with the appearance of flight. The origins of modern avian neuroanatomy are obscured by the more than 100 million years of evolution along their phylogenetic stem (from the origin of the modern radiation in the Middle Jurassic to the split from crocodile-line archosaurs). Here we use phylogenetic comparative approaches to explore which evolutionary scenarios best explain variation in measured volumes of digitally partitioned endocasts of modern birds and their non-avian ancestors. Our analyses suggest that variation in the relative volumes of the endocranium and cerebrum explain most of the structural variation in this lineage. Generalized multi-regime Ornstein-Uhlenbeck (OU) models suggest that powered flight does not appear to be a driver of observed variation, reinforcing the hypothesis that the deep history of the avian brain is complex, with nuances still to be discovered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948048PMC
http://dx.doi.org/10.1111/joa.12403DOI Listing

Publication Analysis

Top Keywords

avian brain
8
brain
5
variation
5
brain modularity
4
modularity theropod-bird
4
theropod-bird transition
4
transition testing
4
testing influence
4
influence flight
4
flight neuroanatomical
4

Similar Publications

Background: Understanding the neural basis of behavior requires insight into how different brain systems coordinate with each other. Existing connectomes for various species have highlighted brain systems essential to various aspects of behavior, yet their application to complex learned behaviors remains limited. Research on vocal learning in songbirds has extensively focused on the vocal control network, though recent work implicates a variety of circuits in contributing to important aspects of vocal behavior.

View Article and Find Full Text PDF

The poultry industry relies extensively on antibiotics and coccidiostats as essential tools for disease management and productivity enhancement. However, increasing concerns about antimicrobial resistance (AMR) and the toxicological safety of these substances have prompted a deeper examination of their broader impacts on animal and human health. This study investigates the toxicological effects of antibiotics and coccidiostats on the gut-brain axis and microbiota in turkeys, with a particular focus on molecular mechanisms that may influence neurochemical and inflammatory responses.

View Article and Find Full Text PDF

The transcriptional landscape of the developing chick trigeminal ganglion.

Dev Biol

December 2024

Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA. Electronic address:

The trigeminal ganglion is a critical structure in the peripheral nervous system, responsible for transmitting sensations of touch, pain, and temperature from craniofacial regions to the brain. Trigeminal ganglion development depends upon intrinsic cellular programming as well as extrinsic signals exchanged by diverse cell populations. With its complex anatomy and dual cellular origin from cranial placodes and neural crest cells, the trigeminal ganglion offers a rich context for examining diverse biological processes, including cell migration, fate determination, adhesion, and axon guidance.

View Article and Find Full Text PDF

Introduction: The late autumn epizootic of the highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in Serbia in 2023 caused massive mortality in the migratory population of common cranes (). This is the first time HPAIV has been identified in the common crane in Serbia, leading to mass mortality of this bird species.

Methods: To understand the pathological impact of HPAIV in cranes, we evaluated the pathological changes in the tissues of common cranes.

View Article and Find Full Text PDF

Protein family FAM241 in human and mouse.

Mamm Genome

December 2024

Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.

FAM241B was isolated in a genome-wide inactivation screen for generation of enlarged lysosomes. FAM241B and FAM241A comprise protein family FAM241 encoding proteins of 121 and 132 amino acid residues, respectively. The proteins exhibit 25% amino acid sequence identity and contain a domain of unknown function (DUF4605; pfam15378) that is conserved from primitive multicellular eukaryotes through vertebrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!