The gene encoding the dihydrolipoyl transacetylase (E2) component from Azotobacter vinelandii has been cloned in Escherichia coli. High expression of the gene was found when the cells were grown for more than 14 h. The E2 produced was partially active, varying 10 and 90% in different experiments. By limited proteolysis of the protein it was shown that the catalytic domain was incorrectly folded, caused by formation of intermolecular or intramolecular S-S bridges. The enzyme was fully activated after unfolding in 2.5 M guanidine hydrochloride containing 2 mM dithiothreitol, followed by refolding by dialysis. Active E2 was isolated in a simple three-step procedure. It possessed a specific activity in the same order as that found after isolation of E2 from purified pyruvate dehydrogenase complex from A. vinelandii. Active E2 comprises about 7% of the total soluble cellular protein in the E. coli clone. By genetic manipulation, deletion mutants of E2 were created, one encoding the lipoyl domain and the N-terminal half of the pyruvate-dehydrogenase (E1)- and lipoamide-dehydrogenase (E3)-binding domain, the other encoding the catalytic domain and the C-terminal half of the E1- and E3-binding domain. In E. coli expression of both mutants was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1989.tb14692.xDOI Listing

Publication Analysis

Top Keywords

gene encoding
8
encoding dihydrolipoyl
8
dihydrolipoyl transacetylase
8
azotobacter vinelandii
8
escherichia coli
8
catalytic domain
8
e3-binding domain
8
domain
5
transacetylase azotobacter
4
vinelandii expression
4

Similar Publications

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Background: Tris (2-chloroethyl) phosphate (TCEP), a widely used flame retardant, is widespread in the environment and potentially harmful to organisms. However, the specific mechanisms of TCEP-induced neurological and reproductive toxicity in fish are largely unknown. Turbot (Scophthalmus maximus) is cultivated on a large scale, and the emergence of pollutants with endocrine disrupting effects seriously affects its economic benefits.

View Article and Find Full Text PDF

Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants.

View Article and Find Full Text PDF

A Neuron-Like Cellular Model for Severe Tinnitus Associated with Rare Variations in the ANK2 Gene.

Mol Neurobiol

January 2025

Otology & Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.

Tinnitus is the perception of sound without an external source, often associated with changes in the auditory pathway and different brain regions. Recent research revealed an overload of missense variants in the ANK2 gene in individuals with severe tinnitus. ANK2, encoding ankyrin-B, regulates axon branching and inhibits microtubule invasion.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!