Correction: Proteomic analysis of the copper resistance of Streptococcus pneumoniae.

Metallomics

Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.

Published: December 2015

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5mt90043cDOI Listing

Publication Analysis

Top Keywords

correction proteomic
4
proteomic analysis
4
analysis copper
4
copper resistance
4
resistance streptococcus
4
streptococcus pneumoniae
4
correction
1
analysis
1
copper
1
resistance
1

Similar Publications

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Data-independent acquisition (DIA) on ion mobility mass spectrometers enables deep proteome coverage and high data completeness in large-scale proteomics studies. For advanced acquisition schemes such as parallel accumulation serial fragmentation-based DIA (diaPASEF) stability of ion mobility (1/K) over time is crucial for consistent data quality. We found that minor changes in environmental air pressure systematically affect the vacuum pressure in the TIMS analyzer, causing ion mobility shifts.

View Article and Find Full Text PDF

The deployment of liquid chromatography-mass spectrometry-based plasma proteomics experiments in a large cohort is sparse, leading to a lack of data available for benchmarking, method development or validation. Comprised of 6,426 plasma analyses, The Environmental Determinants of Diabetes in the Young (TEDDY) proteomics validation study constitutes one of the largest targeted proteomics experiments in the literature to date. The proteomics data from this study were generated over the course of 2.

View Article and Find Full Text PDF

Naturally occurring peptides display a wide mass distribution after ionization due to the presence of heavy isotopes of C, H, N, O, and S and hydrogen loss. There is a crucial need for sensitive methods that collect as much information as possible about all plasma peptide forms. Statistical analysis of the delta mass distribution of peptide precursors from MS/MS spectra that were matched to 63,077 peptide sequences by X!TANDEM revealed Gaussian peaks representing heavy isotopes and hydrogen loss at integer delta mass values of -3, -2, -1, 0, +1, +2, +3, +4, and +5 Da.

View Article and Find Full Text PDF

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!