AI Article Synopsis

  • The study included 439 infants from 2002 to 2012 who were tested for CF, revealing that the 139-VA could reliably identify more mutations compared to other existing tests, particularly benefiting Black infants with a noticeable increase in sensitivity.
  • Overall, the 139-VA demonstrated higher clinical sensitivity than other testing panels, making it a strong candidate for use in newborn screening and CF research.

Article Abstract

Infants are screened for cystic fibrosis (CF) in New York State (NYS) using an IRT-DNA algorithm. The purpose of this study was to validate and assess clinical validity of the US FDA-cleared Illumina MiSeqDx CF 139-Variant Assay (139-VA) in the diverse NYS CF population. The study included 439 infants with CF identified via newborn screening (NBS) from 2002 to 2012. All had been screened using the Abbott Molecular CF Genotyping Assay or the Hologic InPlex CF Molecular Test. All with CF and zero or one mutation were tested using the 139-VA. DNA extracted from dried blood spots was reliably and accurately genotyped using the 139-VA. Sixty-three additional mutations were identified. Clinical sensitivity of three panels ranged from 76.2% (23 mutations recommended for screening by ACMG/ACOG) to 79.7% (current NYS 39-mutation InPlex panel), up to 86.0% for the 139-VA. For all, sensitivity was highest in Whites and lowest in the Black population. Although the sample size was small, there was a nearly 20% increase in sensitivity for the Black CF population using the 139-VA (68.2%) over the ACMG/ACOG and InPlex panels (both 50.0%). Overall, the 139-VA is more sensitive than other commercially available panels, and could be considered for NBS, clinical, or research laboratories conducting CF screening.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.22927DOI Listing

Publication Analysis

Top Keywords

clinical sensitivity
8
cystic fibrosis
8
black population
8
139-va
6
clinical
4
sensitivity cystic
4
fibrosis mutation
4
panels
4
mutation panels
4
panels diverse
4

Similar Publications

An update on multiple breath washout in children with cystic fibrosis.

Expert Rev Respir Med

December 2024

Division of Respiratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.

Introduction: Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane regulator (CFTR) gene, leading to progressive lung disease and systemic complications. Lung disease remains the primary cause of morbidity and mortality, making early detection of lung function decline crucial. The Lung Clearance Index (LCI), derived from the multiple breath washout (MBW) test, has emerged as a sensitive measure for identifying early airway disease.

View Article and Find Full Text PDF

Introduction: The host range of phages is usually assessed with the agar overlay method. However, this method is both cumbersome and subjective. Therefore, a microbroth assay was developed to assess host range and lytic activity patterns of phages in the agar overlay method against a collection of carbapenemase-producing Klebsiella pneumoniae (CRKP) isolates.

View Article and Find Full Text PDF

Background: High-quality bowel preparation is paramount for a successful colonoscopy. This study aimed to explore the effect of artificial intelligence-driven smartphone software on the quality of bowel preparation.

Methods: Firstly, we utilized 3305 valid liquid dung images collected mobile phones as training data.

View Article and Find Full Text PDF

Background: This study aims to develop Z-Score models to normalize measurements of three coronary arteries and enhance the diagnosis of Kawasaki disease (KD) in children from newborns to 10 years old. Developing a reliable Z-Score model is challenging, as some existing models fail the normality test. Overcoming these challenges is crucial for improving KD diagnosis.

View Article and Find Full Text PDF

Screening and identification of antimicrobial peptides from the gut microbiome of cockroach Blattella germanica.

Microbiome

December 2024

MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Article Synopsis
  • * Researchers identified and validated an AMP, named AMP1, which has broad-spectrum antibacterial activity and minimal toxicity to human cells, showing potential as a safer alternative to traditional antibiotics.
  • * The study emphasizes the effective screening of natural AMPs and highlights AMP1's ability to affect bacterial cell wall synthesis and promote wound healing, suggesting it could be a viable option for clinical use.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!