Guided by predictive discovery framework, we investigate bismuth triiodide (BiI3) as a candidate thin-film photovoltaic (PV) absorber. BiI3 was chosen for its optical properties and the potential for "defect-tolerant" charge transport properties, which we test experimentally by measuring optical absorption and recombination lifetimes. We synthesize phase-pure BiI3 thin films by physical vapor transport and solution processing and single-crystals by an electrodynamic gradient vertical Bridgman method. The bandgap of these materials is ∼1.8 eV, and they demonstrate room-temperature band-edge photoluminescence. We measure monoexponential recombination lifetimes in the range of 180-240 ps for thin films, and longer, multiexponential dynamics for single crystals, with time constants up to 1.3 to 1.5 ns. We discuss the outstanding challenges to developing BiI3 PVs, including mechanical and electrical properties, which can also inform future selection of candidate PV absorbers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.5b02022 | DOI Listing |
Appl Radiat Isot
February 2025
School of Basic and Applied Sciences, K.R. Mangalam University, Gurugram, Haryana, 122103, India. Electronic address:
Thin films of Bismuth Tri-iodide BiI were synthesized on a glass substrate by the thermal vacuum deposition technique. Films were exposed to gamma radiations of two doses 10 Gy and 50 Gy. Structural and optical properties of films were studied through X-ray Diffraction and UV spectroscopy both before and after the gamma irradiation.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowskiej St., 41-800 Zabrze, Poland.
This work describes a novel method for converting bismuth triiodide (BiI) microplates into bismuth oxyiodide (BiOI) nanoflakes under ultrasonic irradiation. To produce BiOI nanoflakes with a high yield and high purity, the conversion process was carefully adjusted. Rapid reaction kinetics and increased mass transfer are benefits of the ultrasonic-assisted approach that result in well-defined converted BiOI nanostructures with superior characteristics.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Mathematics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia.
The molecular energy, which is the sum of all eigenvalues, is crucial in determining the total π-electron energy of conjugated hydrocarbon molecules. We used machine learning techniques to calculate the energy, inertia, nullity, signature, and Estrada index of molecular graphs for bismuth tri-iodide and benzene rings embedded in P-type surfaces within 2D networks. We applied MATLAB to extract the actual eigenvalues from the data and developed general equations for these molecular properties.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Nanotechnology Research Centre (NRC), SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India. Electronic address:
Two-dimensional layered bismuth telluride (BiTe), a prominent topological insulator, has garnered global scientific attention for its unique properties and potential applications in optoelectronics and electrochemical devices. Notably, there is a growing emphasis on improving photon-to-electron conversion efficiency in dye-sensitized solar cells (DSSCs), prompting the exploration of alternatives to noble metal catalysts like platinum (Pt). This study presents the synthesis of BiTe and its hybrid nanostructure with single-wall carbon nanotubes (SWCNT) via a straightforward hydrothermal process.
View Article and Find Full Text PDFDalton Trans
August 2024
Solid State and Materials Laboratory, Department of Chemistry, National Institute of Technology, Rourkela-769008, India.
Antimony/bismuth-based organic-inorganic hybrid halide perovskite-like compounds have generated enormous research interest due to their excellent optical properties. Exploration of new compounds and understanding of their structural stability and optoelectronic properties is of utmost importance for practical applications of these materials. We report two new 0D perovskite-like compounds and their solid solution, (CHNH)BiSbI, having propyl amine as the spacer cation and iodine as the halide ion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!