Background: Ceruloplasmin, a ferroxidase present in cerebrospinal fluid (CSF), plays a role in iron homeostasis protecting tissues from oxidative damage. Its reduced enzymatic activity was reported in Parkinson's disease (PD) contributing to the pathological iron accumulation. We previously showed that ceruloplasmin is modified by oxidation in vivo, and, in addition, in vitro by deamidation of specific NGR-motifs that foster the gain of integrin-binding function. Here we investigated whether the loss of ceruloplasmin ferroxidase activity in the CSF of PD patients was accompanied by NGR-motifs deamidation and gain of function.
Results: We have found that endogenous ceruloplasmin in the CSF of PD patients showed structural changes, deamidation of the (962)NGR-motif which is usually hidden within the ceruloplasmin structure, and the gain of integrin-binding function. These effects occur owing to the presence of abnormal levels of hydrogen peroxide we detected in the CSF of PD patients. Interestingly, the pathological CSF's environment of PD patients promoted the same modifications in the exogenously added ceruloplasmin, which in turn resulted in loss of ferroxidase-activity and acquisition of integrin-binding properties.
Conclusions: We show that in pathological oxidative environment of PD-CSF the endogenous ceruloplasmin, in addition to loss-of-ferroxidase function, is modified as to gain integrin-binding function. These findings, beside the known role of ceruloplasmin in iron homeostasis, might have important pathogenic implications due to the potential triggering of signals mediated by the unusual integrin binding in cells of central nervous system. Furthermore, there are pharmacological implications because, based on data obtained in murine models, the administration of ceruloplasmin has been proposed as potential therapeutic treatment of PD, however, the observed CSF's pro-oxidant properties raise the possibility that in human the ceruloplasmin-based therapeutic approach might not be efficacious.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634150 | PMC |
http://dx.doi.org/10.1186/s13024-015-0055-2 | DOI Listing |
Microbiol Spectr
April 2024
Lehrstuhl für Zellbiologie, Universität Konstanz, Konstanz, Germany.
J Appl Oral Sci
December 2023
Ain Shams Universit, Faculty of Dentistry Oral Medicine, Oral Diagnosis and Periodontology Department, Cairo, Egypt.
Background: Periodontal regeneration faces multiple challenges, the most important being cellular insufficiency. In an attempt to improve defect cellularity, we aimed to demonstrate enhancing cellular attraction using arginine-glycine-aspartic acid (RGD) adhesion molecule legend blended hydrogel within the intrabony defects.
Methodology: Forty-five intrabony defects were selected from patients with stage III or IV - grade A or B periodontitis and divided randomly into three equal groups of 15 each: group1 (G1): received minimally invasive surgical technique (MIST) alone, group2 (G2): received MIST and placebo hydrogel injection, and group3 (G3): were treated with MIST and RGD hydrogel injection.
EMBO Mol Med
December 2023
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
Circulation
June 2023
State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Y.W., Jizheng Wang, X.C., C.C., K.Y., M.L., L.Z., F.L., L.S., S.Z.).
Background: Atrial fibrillation (AF) is a highly prevalent condition that can cause or exacerbate heart failure, is an important risk factor for stroke, and is associated with pronounced morbidity and death. Genes uniquely expressed in the atria are known to be essential for maintaining atrial structure and function. Atrial tissue remodeling contributes to arrhythmia recurrence and maintenance.
View Article and Find Full Text PDFCurr Anal Chem
January 2021
Departments of Radiology, Washington University School of Medicine, St Louis, United States.
Background: Gold nanoparticles (AuNPs) are commonly used in nanomedicine because of their unique spectral properties, chemical and biological stability, and ability to quench the fluorescence of organic dyes attached to their surfaces. However, the utility of spherical AuNPs for activatable fluorescence sensing of molecular processes have been confined to resonance-matched fluorophores in the 500 nm to 600 nm spectral range to maximize dye fluorescence quenching efficiency. Expanding the repertoire of fluorophore systems into the NIR fluorescence regimen with emission >800 nm will facilitate the analysis of multiple biological events with high detection sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!