The catalysis of reactions involving fluoropyruvate as donor by N-acetyl neuraminic acid lyase (NAL) variants was investigated. Under kinetic control, the wild-type enzyme catalysed the reaction between fluoropyruvate and N-acetyl mannosamine to give a 90 : 10 ratio of the (3R,4R)- and (3S,4R)-configured products; after extended reaction times, equilibration occurred to give a 30 : 70 mixture of these products. The efficiency and stereoselectivity of reactions of a range of substrates catalysed by the E192N, E192N/T167V/S208V and E192N/T167G NAL variants were also studied. Using fluoropyruvate and (2R,3S)- or (2S,3R)-2,3-dihydroxy-4-oxo-N,N-dipropylbutanamide as substrates, it was possible to obtain three of the four possible diastereomeric products; for each product, the ratio of anomeric and pyranose/furanose forms was determined. The crystal structure of S. aureus NAL in complex with fluoropyruvate was determined, assisting rationalisation of the stereochemical outcome of C-C bond formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717870PMC
http://dx.doi.org/10.1039/c5ob02037aDOI Listing

Publication Analysis

Top Keywords

n-acetyl neuraminic
8
neuraminic acid
8
acid lyase
8
nal variants
8
evaluation fluoropyruvate
4
fluoropyruvate nucleophile
4
nucleophile reactions
4
reactions catalysed
4
catalysed n-acetyl
4
lyase variants
4

Similar Publications

Aldolase B Deficient Mice Are Characterized by Hepatic Nucleotide Sugar Abnormalities.

J Inherit Metab Dis

January 2025

Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, The Netherlands.

Hereditary fructose intolerance (HFI) is characterized by liver damage and a secondary defect in N-linked glycosylation due to impairment of mannose phosphate isomerase (MPI). Mannose treatment has been shown to be an effective treatment in a primary defect in MPI (i.e.

View Article and Find Full Text PDF

Voltammetric analysis of glycoproteins containing sialylated and neutral glycans at pyrolytic graphite electrode.

Bioelectrochemistry

November 2024

Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics CAS, v.v.i., Královopolská 135, 612 00 Brno, Czech Republic.

Recently, it was described that neutral glycans can be distinguished from those containing sialic acid at the mercury electrode after modification with osmium(VI) N,N,N',N'-tetramethylethylenediamine (Os(VI)tem). Our work shows the possibility of studying glycans and glycoproteins at pyrolytic graphite electrodes depending on thepresence of sialic acid. Short glycans, glycans released from glycoproteins, and glycoproteins themselves yielded similar voltammetric responses after their modification by Os(VI)tem.

View Article and Find Full Text PDF

Background: To discover effective drugs for treating Influenza (a disease with high annual mortality), large amounts of recombinant neuraminidase (NA) with suitable catalytic activity are needed. However, the functional activity of the full-length form of this enzyme in the bacterial host (as producing cells with a low cost) in a soluble form is limited. Thus, in the present study, a truncated form of the neuraminidase (derived from California H1N1 influenza strain) was designed, then biosynthesized in Escherichia coli BL21 (DE3), Shuffle T7, and SILEX systems.

View Article and Find Full Text PDF

Human parainfluenza viruses (hPIVs) are causative agents of upper and lower respiratory tract infections and they have four serotypes. The virion surface displays hemagglutinin-neuraminidase (HN), having hemagglutinating (HA) and neuraminidase (NA) activities in a single molecule. The HA activity binds the virion to sialic acid on the viral receptor on host cells and the NA releases the progeny viruses from the cell surface.

View Article and Find Full Text PDF

Enzymatic promiscuity and underground reactions accounted for the capability of Escherichia coli to use the non-natural chemical synthon 2,4-dihydroxybutyric acid as a carbon source for growth.

Microbiol Res

November 2024

Toulouse Biotechnology Institute, UMR INSA -CNRS5504 and UMR INSA-INRAE 792, 135 avenue de Rangueil, Toulouse 31077, France; Toulouse White Biotechnology, UMS INRAE-INSA-CNRS, 135 Avenue de Rangueil, Toulouse 31077, France. Electronic address:

2,4-dihydroxybutyric acid (DHB) and 2-keto-4-hydroxybutyrate (OHB) are non-natural molecules obtained through synthetic pathways from renewable carbon source. As they are structurally similar to lactate and pyruvate respectively, they could possibly interfere with the metabolic network of Escherichia coli. In fact, we showed that DHB can be easily oxidized by the membrane associated L and D-lactate dehydrogenases encoded by lldD, dld and ykgF into OHB, and the latter being cleaved into pyruvate and formaldehyde by several pyruvate-dependent aldolases, with YagE being the most effective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!