We have carried out systematic first-principles electronic structure computations of growth of ultrathin films of compounds of group III (B, Al, In, Ga, and Tl) with group V (N, P, As, Sb, and Bi) elements on Si(111) substrate, including effects of hydrogenation. Two bilayers (BLs) of AlBi, InBi, GaBi, TlAs, and TlSb are found to support a topological phase over a wide range of strains, in addition to BBi, TlN, and TlBi which can be driven into the nontrivial phase via strain. A large band gap of 134 meV is identified in hydrogenated 2 BL film of InBi. One and two BL films of GaBi and 2 BL films of InBi and TlAs on Si(111) surface possess nontrivial phases with a band gap as large as 121 meV in the case of 2 BL film of GaBi. Persistence of the nontrivial phase upon hydrogenations in the III-V thin films suggests that these films are suitable for growing on various substrates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633599 | PMC |
http://dx.doi.org/10.1038/srep15463 | DOI Listing |
Anal Methods
January 2025
Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.
View Article and Find Full Text PDFHeliyon
November 2024
Faculty of Physics, Shahrood University of Technology, 3619995161, Shahrood, Iran.
This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10 of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
The field of perovskite optoelectronics and electronics has rapidly advanced, driven by excellent material properties and a diverse range of fabrication methods available. Among them, triple-cation perovskites such as CsFAMAPbI offer enhanced stability and superior performance, making them ideal candidates for advanced applications. However, the multicomponent nature of these perovskites introduces complexity, particularly in how their structural, optical, and electrical properties are influenced by thermal annealing─a critical step for achieving high-quality thin films.
View Article and Find Full Text PDFSci Rep
January 2025
Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!