Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest.

New Phytol

Joseph W. Jones Ecological Research Center at Ichauway, 3988 Jones Center Drive, Newton, GA, 39870, USA.

Published: March 2016

Elucidation of the patterns and controls of carbon (C) flow and nitrogen (N) cycling in forests has been hindered by a poor understanding of ectomycorrhizal fungal mycelia (EFM) dynamics. In this study, EFM standing biomass (based on soil ergosterol concentrations), production (based on ergosterol accrual in ingrowth cores), and turnover rate (the quotient of annual production and average standing biomass estimates) were assessed in a 25-yr-old longleaf pine (Pinus palustris) plantation where C flow was manipulated by foliar scorching and N fertilization for 5 yr before study initiation. In the controls, EFM standing biomass was 30 ± 7 g m(-2) , production was 279 ± 63 g m(-2)  yr(-1) , and turnover rate was 10 ± 3 times yr(-1) . The scorched × fertilized treatment had significantly higher EFM standing biomass (38 ± 8 g m(-2) ), significantly lower production (205 ± 28 g m(-2)  yr(-1) ), and a trend of decreased turnover rate (6 ± 1 times yr(-1) ). The EFM turnover estimates, which are among the first reported for natural systems, indicate that EFM are a dynamic component of ecosystems, and that conventional assessments have probably underestimated the role of EFM in C flow and nutrient cycling.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.13729DOI Listing

Publication Analysis

Top Keywords

standing biomass
16
efm standing
12
turnover rate
12
ectomycorrhizal fungal
8
fungal mycelia
8
longleaf pine
8
times yr-1
8
efm
7
turnover
5
mycelia turnover
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!