This paper presents a novel minimally-invasive catheter-based acoustic interrogation device for real-time monitoring the dynamics of the lower esophageal sphincter (LES). Dysfunction of the LES could result gastrointestinal (GI) diseases, such as gastroesophageal reflux disease (GERD). A micro-oscillator actively emitting sound wave at 16 kHz is located at one side of the LES, and a miniature microphone is located at the other side of the LES to capture the sound generated from the oscillator. Thus, the dynamics of the opening and closing of the LES can be monitored. The device was tested in vitro by utilizing a custom-designed LES simulator, as well as in vivo in a pilot canine model. In the in vitro test, the sound was captured by the microphone and its strength was correlated with the level of LES opening and closing which was controlled by the simulator. The measurements showed statistically significant (p  <  0.05) Pearson correlation coefficients (0.905 on the average in quiet environment and 0.736 on the average in noisy environment, DOF  =  9). In the in vivo test, the LES was forced open and closed by a transoral endoscope, which was monitored in real-time by a transpyloric endoscope inserted from the duodenum and positioned into the distal stomach. Frame-by-frame video analysis validated the interrelation between the sound strength and the LES opening and closing. The LES dynamics monitored by the proposed device has the potential to become a valuable minimally-invasive technique for understanding LES dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0967-3334/36/12/2471DOI Listing

Publication Analysis

Top Keywords

catheter-based acoustic
8
acoustic interrogation
8
interrogation device
8
device real-time
8
real-time monitoring
8
monitoring dynamics
8
dynamics lower
8
lower esophageal
8
esophageal sphincter
8
pilot canine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!