Analysis and Interpretation of Superresolution Single-Particle Trajectories.

Biophys J

Department of Applied Mathematics, Tel-Aviv University, Tel-Aviv, Israel.

Published: November 2015

A large number (tens of thousands) of single molecular trajectories on a cell membrane can now be collected by superresolution methods. The data contains information about the diffusive motion of molecule, proteins, or receptors and here we review methods for its recovery by statistical analysis of the data. The information includes the forces, organization of the membrane, the diffusion tensor, the long-time behavior of the trajectories, and more. To recover the long-time behavior and statistics of long trajectories, a stochastic model of their nonequilibrium motion is required. Modeling and data analysis serve extracting novel biophysical features at an unprecedented spatiotemporal resolution. The review presents data analysis, modeling, and stochastic simulations applied in particular on surface receptors evolving in neuronal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643198PMC
http://dx.doi.org/10.1016/j.bpj.2015.09.003DOI Listing

Publication Analysis

Top Keywords

long-time behavior
8
data analysis
8
analysis
4
analysis interpretation
4
interpretation superresolution
4
superresolution single-particle
4
trajectories
4
single-particle trajectories
4
trajectories large
4
large number
4

Similar Publications

Humans and predators occupy dominant positions in ecosystems and are generally believed to play a decisive role in maintaining ecosystem stability, particularly in the context of virus transmission. However, this may not always be the case. By establishing some ecosystem virus transmission models that cover both human perspectives and predators, we have drawn the following conclusions: (1) Controlling vaccination activities from the human perspective can potentially lower the transmission rate and improve herd immunity, thereby indirectly protecting unvaccinated risk groups.

View Article and Find Full Text PDF

Continuous Abrupt Vegetation Shifts in the Global Terrestrial Ecosystem.

Ecol Lett

January 2025

Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China.

Previous studies have primarily focused on single abrupt shifts; however, the actual ecosystem will experience continuous abrupt shifts (CAS), including different directions shifts (DDS) and same direction shifts (SDS). The patterns and drivers of these CAS remain unclear. We examined the patterns of the DDS and SDS by two vegetation datasets and then tested climate drivers comprising atmospheric temperature (MAT), atmospheric precipitation (MAP), soil temperature (ST) and soil water content (SW); finally, hysteresis effects were examined with reference to principal drivers.

View Article and Find Full Text PDF

Magnesium hydride (MgH) is a promising material for solid-state hydrogen storage due to its high gravimetric hydrogen capacity as well as the abundance and low cost of magnesium. The material's limiting factor is the high dehydrogenation temperature (over 300 °C) and sluggish (de)hydrogenation kinetics when no catalyst is present, making it impractical for onboard applications. Catalysts and physical restructuring (e.

View Article and Find Full Text PDF

In this paper, a novel age-structured epidemiological model that simultaneously considers multiple viral strains is proposed. We develop a numerical framework for the study of the dynamics and optimal control by a linearly implicit Euler method, in which the biological meaning is unconditionally preserved. The first order convergence of numerical solutions in a finite time is derived from a uniform numerical boundedness.

View Article and Find Full Text PDF

Soil moisture drought and diverse impacts on vegetation across the Tibetan Plateau in recent three decades.

Sci Total Environ

January 2025

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China. Electronic address:

Climate warming is presumed to cause drought on the Tibetan Plateau (TP), posing severe threats to local vegetation and ecosystems. Currently, soil moisture (SM) drought and its effects on vegetation growth have been rarely reported, due to lacking observations and data uncertainties. Here we used ERA5-Land, ESA CCI, and GLDAS Noah SM to investigate the spatiotemporal patterns of summertime (May-September) SM drought and its impacts on vegetation over 1995-2018.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!