A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633239PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142109PLOS

Publication Analysis

Top Keywords

illusory motion
32
self-motion perception
20
visual stimulus
20
motion
13
visual motion
12
moving visual
12
moving star
12
visual
11
self-motion
10
stimulus
10

Similar Publications

The current study sought to examine factors that affect vection (the illusory experience of self-motion in the absence of real motion), visually-induced motion sickness, and one's sense of presence in a passive virtual reality driving simulation by exposing participants to 60-s pre-recorded driving laps and recording their self-reported metrics as well as their head motion patterns during the laps. Faster virtual driving speed (average 120 mph vs. 60 mph) resulted in significantly higher ratings of vection and motion sickness.

View Article and Find Full Text PDF

Visual perceptual learning plays a crucial role in shaping our understanding of how the human brain integrates visual cues to construct coherent perceptual experiences. The visual system is continually challenged to integrate a multitude of visual cues, including form and motion, to create a unified representation of the surrounding visual scene. This process involves both the processing of local signals and their integration into a coherent global percept.

View Article and Find Full Text PDF
Article Synopsis
  • Visual illusions are systematic misperceptions that reveal how our brains construct visual experiences, with the "frame effect" being a notable example where moving frames mislead our perception of an object's position.
  • A newly identified illusion, the "split stimulus effect," shows that symmetrical motion of overlaid frames can cause observers to perceive two instances of a single stimulus, as evidenced by participants sometimes reporting two dots when only one was shown.
  • This study also explored factors influencing the illusion, such as frame speed and spatial attention, and demonstrated that individuals can hold conflicting perceptual predictions about the same object, shedding light on the underlying mechanisms of visual perception.
View Article and Find Full Text PDF

Visually induced involuntary arm, head, and torso movements.

Exp Brain Res

November 2024

Ashton Graybiel Spatial Orientation Laboratory, MS 033, Brandeis University, 415 South Street, Waltham, MA, 02454, USA.

We explored in 75 s long trials the effects of visually induced self-rotation and displacement (SR&D) on the horizontally extended right arm of standing subjects (N = 12). A "tool condition" was included in which subjects held a long rod. The extent of arm movement was contingent on whether the arm was extended out Freely or Pointing at a briefly proprioceptively specified target position.

View Article and Find Full Text PDF

We showed to the same observers both dynamic and static 2D patterns that can both evoke distinctive perceptions of motion or optic flow, as if moving in a tunnel or into a dark hole. At all times pupil diameters were monitored with an infrared eye tracker. We found a converging set of results indicating stronger pupil dilations to expansive growth of shapes or optic flows evoking a forward motion into a dark tunnel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!