Statement Of The Problem: Composite resin may be used in different temperatures; it is crucial to determine the effect of temperature on mechanical properties of nanohybrid and silorane-based composite.
Purpose: This in vitro study compared the flexural strength and modulus of elasticity of nanohybrid and silorane-based resin composite, at 4˚C, room temperature (25˚C), and 45˚C.
Materials And Method: In this experimental study, 60 specimens were prepared in a metal split mold (2×2×25mm). Two different resin composites, Filtek Z250 XT (3M/ ESPE) and Filtek P90 (3M/ESPE), were evaluated. The material were inserted into split molds at room temperature, 4˚C or 45˚C and cured with LED (1200 mW/cm(2)) for 20 seconds in four points (n=10). Then, a three-point bending test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min for measuring the flexural strength and flexural modulus of samples. The data were analyzed by the two-way ANOVA and Tukey test (p< 0.05).
Results: The mean highest flexural strength was observed at 45˚C, showing statistically significant difference with flexural strength at 4˚C (p= 0.0001) and 25˚C (p= 0.003) regardless of the type of resin composite. The flexural modulus at 45˚C was highest, showing the statistically significant difference with flexural modulus at 4˚C (p= 0.0001) and 25˚C (p= 0.002). The flexural modulus was statistically different between nanohybrid and silorane-based resin composite (p= 0.01) in 25˚C and 45˚C, but there were no statistically significant differences between flexural strength of Filtek Z250 XT and Filtek P90 regardless of the temperatures (p= 0.062).
Conclusion: Preheating the resin composite at 45˚C improves flexural strength and modulus of nanohybrid and silorane-based resin composite. However, flexural strength and modulus of the tested materials were not affected by precooling. The flexural modulus of nanohybrid resin composite was significantly higher than silorane-based resin composite in 25˚C and 45˚C temperatures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623839 | PMC |
Int Endod J
January 2025
Restorative and Aesthetic Dentistry Department, College of Dentistry, University of Baghdad, Baghdad, Iraq.
Aim: 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties.
Methodology: Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated.
Sci Rep
January 2025
Department of Civil Engineering , University of Engineering and Technology Peshawar, Peshawar, Pakistan.
For millennia mud has been utilized to make brick for the construction of both residential as well as architectural purposes. However, concerns regarding their vulnerability to different kinds of hazards due to their weak mechanical properties and durability have emerged. This study addressed the global challenge of developing sustainable and affordable construction materials, particularly in resource-constrained regions.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen.
Purpose: This systematic review evaluated the effect of different printing orientations on the physical-mechanical properties and accuracy of resin denture bases and related specimens.
Study Selection: Utilizing PRISMA 2020 guidelines, a comprehensive search of PubMed, Web of Science, Cochrane, and Scopus databases was conducted until June 2024. Included studies examined the accuracy, volumetric changes, and mechanical or physical properties of 3D-printed denture bases in various orientations.
Dent Mater
January 2025
Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, SP 17012-901, Brazil.
Objectives: To characterize two experimental zirconia bilayer materials compared to their monolithic controls, before and after hydrothermal aging.
Methods: Commercial zirconia powders were utilized to fabricate two bilayer materials: 3Y-TZP+ 5Y-PSZ (3Y+5Y/BI) and 4Y-PSZ+ 5Y-PSZ (4Y+5Y/BI), alongside control groups 3Y-TZP (3Y/C), 4Y-PSZ (4Y/C), and 5Y-PSZ (5Y/C). Compacted specimens were sintered (1550 °C- 2 h, 3 °C/min), and half of them underwent hydrothermal aging (134 °C-20h, 2.
Heliyon
January 2025
Department of Industrial and Production Engineering, Bangladesh Army University of Science and Technology (BAUST), Saidpur, Cantonment, Bangladesh.
The use of composite materials, whether metallic or non-metallic, is becoming more popular nowadays because of some of their superior characteristics compared to the use of wood and metallic materials alone. From this perspective, a new natural fiber reinforced composite by varying the fiber orientation was developed in this study using coir and pineapple leaf fiber. This work uses the Taguchi method to investigate the different effects of control factors on mechanical and physical characteristics of the fabricated natural fiber-based composites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!